

Spent Fuel and Waste Science and Technology (SFWST)

The Smart *K_d* Approach: Integrating Coupled THC Processes for Radionuclide Transport into GDSA

U.S. Nuclear Waste Technical Review Board Fact Finding Meeting July 19, 2022 Omotayo Omosebi¹, Haruko Wainwright², Dinara Ermakova³, Hannah Lu⁴, Liange Zheng¹ ¹LBNL, ²MIT, ³UCB, ⁴Stanford

ENERGY

NNS

Funded by the Spent Fuel and Waste Science and Technology, Office of Nuclear Energy, of the U.S. Department of Energy

- Background/Motivation
- The Process Model
- ROM with "Smart" K_d
- Integrating "Smart" K_d into GDSA
- Summary

ROM – Reduced-Order Modeling GDSA – Geologic Disposal Safety Assessment K_d = Distribution coefficient

Background and Motivation

3

Background and Motivation – cont'd

Thermal-Hydrological-Chemical (THC) model: *TOUGHREACT*

Performance Assessment (PA) model: *PFLOTRAN*

- Models critical THC processes that drive the integrity of EBS containment
- Computationally expensive to model a single waste package

- K_d = Distribution coefficient
- A measure of contaminant partitioning between the solid and aqueous phases

 $K_d = \frac{\text{Mass of Adsorbate Sorbed}}{\text{Mass of Adsorbate in Solution}}$

- Large-scale flow and radionuclide transport model
- Traditionally uses K_d to model mobility of radionuclides
- Capable of modeling multiple waste packages
- Need to include all the detailed THC processes around EBS in the PA model
- Computationally not feasible

- THC Thermal-Hydrological-Chemical
- EBS Engineered Barrier System
- PA Performance assessment

- Develop the methodology to:
 - Bridge the scale
 - Incorporate THC processes in PA
 - Represent buffer changes in PA
 - Transfer the uncertainty from THC models to PA

THC - Thermal-Hydrological-ChemicalPA - Performance assessment

Bridging the Scales: Surrogate Models/Emulators

- Spatially integrated *K_d* (mass preserved)
- Compute time-varying K_d
- Propagate the uncertainty of geochemical parameters to *K_d*
 - Develop an emulator for K_d(t) ~ f(Geochemical parameters)

6

50 m

The Process Model

- Buffer-Argillite system (Zheng et al., 2019; Cao et al., 2019)
- Two-Site Protolysis Non-Electrostatic Surface Complexation and Cation Exchange sorption model (2 SPNE SC/CE) (Bradbury and Baeyens, 2011)
- Start from the unsaturated condition at 0 years
- Uranium transport after 1000 years (fully-saturated buffer)
 - Dissolution of Schoepite
- Adsorption, cation exchange, surface complexation of U
- Kinetically controlled mineral dissolution and precipitation

Parameter Range

7 Parameters: $\{x_i i = 1, 2,, k\}, k$	=7
---	----

Parameters	Range	Base value	
Site density (cm ² /g) of illite	10 ³ -10 ⁶	10 ⁵	
Site density (cm²/g) of smectite	10 ³ -10 ⁶	10 ⁵	•
Volume fraction: calcite	0.01-0.03	0.01	
Volume fraction: smectite	0.3-0.95	0.92	
Volume fraction: illite	0.01-0.2	0.0001	
Initial pore water composition: pH or H ⁺	10 ⁻⁹ -10 ⁻⁷	1.91 * 10 ⁻⁸	
Initial pore water composition: Ca ²⁺	10 ⁻³ -10 ⁻¹	0.022	

The key point of this THC model is the mineral composition change (illitization: smectite --> illite), which alters K_d and affects safety functions.

Ermakova, D., Wainwright, H.M., Li, H., Zheng, L., "Global Sensitivity Analysis for Coupled Thermal-Hydorological-Chemical Simulations in Generic Nuclear Waste Repositories", Journal of Nuclear Engineering and Radiation Science, 7(4), 041902.

Integrating "smart" K_d into GDSA: U & K_d Distribution Across the Buffer

Ermakova, D., Wainwright, H.M., Li, H., Zheng, L., "Global Sensitivity Analysis for Coupled Thermal-Hydorological-Chemical Simulations in Generic Nuclear Waste Repositories", Journal of Nuclear Engineering and Radiation Science, 7(4), 041902.

9

ROM for "smart" K_d: Development of Surrogate Models (Emulators)

• Establish the relationship between input parameters and K_d

$$\mathbf{K}_{\mathrm{d}} = f(t, \mathbf{p})$$

- Surrogate models (emulators) are statistical representations:
 - Trained on a set of the (K_d, p) combination
 - Predict K_d at any p values in the range
 - Once established, we don't have to run THC models.
- Regression: Random Forest (RF), Neural Network (NN)

Domain splitting

 Clustering of training sets: k-means with dynamic time warping

Lu, H., Ermakova, D., Wainwright, H. M., Zheng, L., & Tartakovsky, D. M. (2021). Data-informed Emulators for Multi-Physics Simulations. Journal of Machine Learning for Modeling and Computing, 2(2).

Development of Surrogate Models (Emulators)

• Establish the relationship between input parameters and K_d

 $\mathbf{K}_{\mathrm{d}} = f(t, \mathbf{p})$

- Surrogate models (emulators) are statistical representations:
 - Trained on a set of the (K_d, p) combination
 - Predict K_d at any p values in the range
 - Once established, we don't have to run THC models.
- Regression: Random Forest (RF), Neural Network (NN)

Lu, H., Ermakova, D., Wainwright, H. M., Zheng, L., & Tartakovsky, D. M. (2021). Data-informed Emulators for Multi-Physics Simulations. Journal of Machine Learning for Modeling and Computing, 2(2).

PA (PFLOTRAN) Model

- Canister-Buffer-EDZ-Rock System
- Uranium transport
- Constant K_d

PA (*PFLOTRAN*) Model with THC-derived K_d

PA (*PFLOTRAN*) Model with THC-derived K_d

-8.5

-8

log(H+)

-8

log(H+)

-7.5

-7.5

- U concentration (log) at the buffer-rock interface
- Transport simulation with *PFLOTRAN*
- Function of geochemical parameters

-10

-1

SFWST

-3

-2.5

-2

log(Ca)

-1.5

0.3

6.0 8.0 8.0

0.7 Aolume

tite <u>و</u> 0.5 uS)60.4

-8

-9

-10

-5.5

-6

-6.5

-7.5

-7

-7

Reduced-Order Modeling (ROM) for SpatioTemporal Variability of U Concentration

- Surrogate models to capture the spatiotemporal variability
- PA Connection:
 - Spatiotemporal evolution of U concentrations within the buffer
 - Temporal evolution of flux from the buffer \rightarrow Flux preserved K_d

ROM - Reduced-Order Modeling

- U Uranium
- PA Performance Assessment

Physics-coupled Reduced-Order Modeling (ROM) with Dynamic Mode Decomposition (DMD)

- Dynamic Mode Decomposition
 - A dimensionality reduction algorithm developed for time-series datasets

ROM – Reduced-Order Modeling DMD - Dynamic Mode Decomposition

Lu and Tartakovsky, in prep

Physics-coupled Reduced-Order Modeling (ROM) with Dynamic Mode Decomposition (DMD)

- Dynamic Mode Decomposition
 - A dimensionality reduction algorithm developed for time-series datasets

Compute K(p) and B(p) based on the ensemble data $\begin{bmatrix} I & I & I \\ I & I & I \end{bmatrix} \begin{bmatrix} I & I & I \\ V^{(l)} = \begin{bmatrix} V^{(l)} & \hat{\mathbf{Y}} & \hat{\mathbf{Y}} \end{bmatrix} = \begin{bmatrix} V^{(l)} & \hat{\mathbf{Y}} & \hat{\mathbf{Y}} \end{bmatrix} = \begin{bmatrix} V^{(l)} & V^{(l)} & \hat{\mathbf{Y}} \end{bmatrix} = \begin{bmatrix} V^{(l)} & V^{(l)} & \hat{\mathbf{Y}} \end{bmatrix}$

$$\mathbf{K}(\mathbf{p}^{(i)}), \mathbf{B}(\mathbf{p}^{(i)}) = \arg\min_{\hat{\mathbf{K}}, \hat{\mathbf{B}}} \|\mathbf{Y}_{2}^{(i)} - \hat{\mathbf{K}}\mathbf{Y}_{1}^{(i)} - \hat{\mathbf{B}}\|_{F}, \mathbf{Y}_{1}^{(i)} = \begin{bmatrix} \mathbf{y}(t_{1}; \mathbf{p}^{(i)}) & \cdots & \mathbf{y}(t_{N_{t}-1}; \mathbf{p}^{(i)}) \\ | & | & | \end{bmatrix}, \mathbf{Y}_{2}^{(i)} = \begin{bmatrix} \mathbf{y}(t_{2}; \mathbf{p}^{(i)}) & \cdots & \mathbf{y}(t_{N_{t}}; \mathbf{p}^{(i)})) \\ | & | & | & | \end{bmatrix}$$

Define ROM

 $\mathbf{q}(t^{k+1}; \mathbf{p}^{(i)}) \approx \tilde{\mathbf{K}}(\mathbf{p}^{(i)}) \mathbf{q}(t^k; \mathbf{p}^{(i)}) + \tilde{\mathbf{B}}(\mathbf{p}^{(i)}), \ \mathbf{y}(t; \mathbf{p}^{(i)}) = \mathbf{V}(\mathbf{p}^{(i)}) \mathbf{q}(t; \mathbf{p}^{(i)}), \ i = 1, \cdots, N_{MC}$

Lu and Tartakovsky, in prep

Physics-coupled ROM:DMD

- Preliminary Results
 - Co-estimation of {U, Ca, pH}

Summary

- Demonstrated a workflow to connect THC to PA
 - Temporal evolution of buffer-averaged K_d (mass-preserved K_d)
 - Emulator for buffer-averaged K_d
 - ✓ NN/RF comparison
 - Parameter domain splitting for capturing non-linearity
 - UQ with *K_d* from THC
 - ✓ Geochemical parameters \rightarrow *PFLOTRAN*-predicted U concentrations
- Developing new surrogate models for THC
 - Emulator based on Dynamics Mode Decomposition
 - Spatially/temporally resolved U concentrations within the buffer (--> fluxpreserved K_d)

19

energy.gov/ne

Ermakova, D., Wainwright, H.M., Li, H., Zheng, L., "Global Sensitivity Analysis for Coupled Thermal-Hydorological-Chemical Simulations in Generic Nuclear Waste Repositories", Journal of Nuclear Engineering and Radiation Science, 7(4), 041902.

Lu, H., Ermakova, D., Wainwright, H. M., Zheng, L., & Tartakovsky, D. M. (2021). Data-informed Emulators for Multi-Physics Simulations. Journal of Machine Learning for Modeling and Computing, 2(2).

Cao, X., Zheng, L., Hou, D., and Hu, L., 2019, "On the Long-Term Migration of Uranyl in Bentonite Barrier for High-Level Radioactive Waste Repositories: The Effect of Different Host Rocks," Chem. Geol., 525, pp. 46–57.

Wainwright, H.M., Ermakova, D., Lu, H., Wainwright, H. M., Zheng, L., & Tartakovsky, D. M. "Report: LBNL FY20 research in GDSA Modeling and Integration", August 21st, LBNL report.