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Agenda

▪ Background/Motivation

▪ The Process Model

▪ ROM with “Smart” Kd

▪ Integrating “Smart” Kd into GDSA

▪ Summary
ROM – Reduced-Order Modeling

GDSA – Geologic Disposal Safety Assessment

Kd = Distribution coefficient
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Background and Motivation

● EBS Integrity:

o Breach of canister

o Cracks within bentonite buffer and surrounding EDZ

o Imperfect seal at buffer-rock interface

● Containment of radionuclides

● Contamination of ground water

Engineered Barrier System (EBS)

SF - Spent Fuel

HLW - High-Level Radioactive Waste

ILW - Intermediate-Level Radioactive Waste

EBS - Engineered Barrier System

EDZ - Excavation Damaged Zone
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Background and Motivation – cont’d

Performance Assessment 

(PA) model: PFLOTRAN

● Large-scale flow and

radionuclide transport model

● Traditionally uses Kd to model

mobility of radionuclides

● Capable of modeling multiple

waste packages

● Need to include all the detailed

THC processes around EBS in

the PA model

● Computationally not feasible

Thermal-Hydrological-Chemical

(THC) model: TOUGHREACT

● Models critical THC processes

that drive the integrity of EBS

containment

● Computationally expensive to

model a single waste package

Buffer-Averaged 

Kd

● Kd = Distribution coefficient

● A measure of contaminant

partitioning between the

solid and aqueous phases

𝑲𝒅 =
𝐌𝐚𝐬𝐬 𝐨𝐟 𝐀𝐝𝐬𝐨𝐫𝐛𝐚𝐭𝐞 𝐒𝐨𝐫𝐛𝐞𝐝

𝐌𝐚𝐬𝐬 𝐨𝐟 𝐀𝐝𝐬𝐨𝐫𝐛𝐚𝐭𝐞 𝐢𝐧 𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧

THC - Thermal-Hydrological-Chemical

EBS - Engineered Barrier System

PA - Performance assessment
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Objective

● Develop the methodology to:

○ Bridge the scale

○ Incorporate THC processes in PA

○ Represent buffer changes in PA

○ Transfer the uncertainty from THC models to PA

THC - Thermal-Hydrological-Chemical

PA - Performance assessment
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▪ Spatially integrated Kd (mass preserved)

▪ Compute time-varying Kd

▪ Propagate the uncertainty of geochemical 
parameters to Kd

• Develop an emulator for Kd(t) ~ f(Geochemical 
parameters) 

Bridging the Scales: Surrogate Models/Emulators

6Kd = Distribution coefficient
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The Process Model

7

• Buffer-Argillite system (Zheng et al., 2019; Cao et al., 2019)

• Two-Site Protolysis Non-Electrostatic Surface Complexation and Cation 

Exchange sorption model (2 SPNE SC/CE) (Bradbury and Baeyens, 2011)

• Start from the unsaturated condition at 0 years 

• Uranium transport after 1000 years (fully-saturated buffer)

o Dissolution of Schoepite

• Adsorption, cation exchange, surface complexation of U

• Kinetically controlled mineral dissolution and precipitation

SPNE SC/CE - Site Protolysis Non-Electrostatic 

Surface Complexation and Cation 

Exchange sorption model

U - Uranium
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Parameter Range

Parameters Range Base value 

Site density (cm2/g) of illite 10
3

-10
6

10
5

Site density (cm2/g) of 

smectite
10

3
-10

6
10

5

Volume fraction:  calcite 0.01-0.03 0.01

Volume fraction: smectite 0.3-0.95 0.92

Volume fraction: illite 0.01-0.2 0.0001

Initial pore water 

composition: pH or H
+ 10

-9
-10

-7 
1.91 * 10

-8

Initial pore water 

composition:  Ca
2+ 10

-3
-10

-1 0.022

• The key point of this THC model is the mineral

composition change (illitization: smectite --> illite),

which alters Kd and affects safety functions.

Ermakova, D., Wainwright, H.M., Li, H., Zheng, L., “Global Sensitivity Analysis for Coupled Thermal-Hydorological-Chemical 

Simulations in Generic Nuclear Waste Repositories”, Journal of Nuclear Engineering and Radiation Science, 7(4), 041902.
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Integrating “smart” Kd into GDSA: U & Kd Distribution Across the Buffer

Ermakova, D., Wainwright, H.M., Li, H., Zheng, L., “Global Sensitivity Analysis for Coupled Thermal-Hydorological-Chemical 

Simulations in Generic Nuclear Waste Repositories”, Journal of Nuclear Engineering and Radiation Science, 7(4), 041902.
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▪ Establish the relationship between input 

parameters and Kd

▪ Surrogate models (emulators) are 

statistical representations: 

• Trained on a set of the (Kd, p) combination

• Predict Kd at any p values in the range 

• Once established, we don’t have to run THC 

models. 

▪ Regression: Random Forest (RF), Neural 

Network (NN)

ROM for “smart” Kd: Development of Surrogate Models (Emulators)

Lu, H., Ermakova, D., Wainwright, H. M., Zheng, L., & Tartakovsky, D. M. (2021). Data-informed Emulators for Multi-

Physics Simulations. Journal of Machine Learning for Modeling and Computing, 2(2).

Domain splitting

• Clustering of training sets: k-means with 
dynamic time warping

RF NN
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▪ Establish the relationship between input 

parameters and Kd

▪ Surrogate models (emulators) are 

statistical representations: 

• Trained on a set of the (Kd, p) combination

• Predict Kd at any p values in the range 

• Once established, we don’t have to run THC 

models. 

▪ Regression: Random Forest (RF), Neural 

Network (NN)

Development of Surrogate Models (Emulators)

Lu, H., Ermakova, D., Wainwright, H. M., Zheng, L., & Tartakovsky, D. M. (2021). Data-informed Emulators for Multi-

Physics Simulations. Journal of Machine Learning for Modeling and Computing, 2(2).

With ClusteringWithout Clustering
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▪ Canister-Buffer-EDZ-Rock System

▪ Reflective boundaries

▪ Uranium transport

▪ Constant Kd

PA (PFLOTRAN) Model

0

37.5

x

z 37.5

EDZ - Excavation Damaged Zone
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▪ Kd values from the emulator 

▪ PFLOTRAN simulations (temporally constant)

PA (PFLOTRAN) Model with THC-derived Kd

2E3 years

Buffer

Rock (4.5 m) 
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▪ U concentration (log) at the buffer-rock 

interface 

▪ Transport simulation with PFLOTRAN

▪ Function of geochemical parameters

PA (PFLOTRAN) Model with THC-derived Kd

TOUGHREACT
(THC)

Geochemical 
parameters

PFLOTRAN
(PA)

Kd

THC  - Thermal-Hydrological-Chemical

PA     - Performance assessment 

U       - Uranium
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▪ Surrogate models to capture the spatiotemporal 

variability 

▪ PA Connection: 

• Spatiotemporal evolution of U concentrations within the 

buffer

• Temporal evolution of flux from the buffer → Flux 

preserved Kd

Reduced-Order Modeling (ROM) for SpatioTemporal Variability of U 
Concentration

Time

Time, yr

D
is

ta
n

ce
, 
m

D
is

ta
n

ce
, 
m

U concentration

pH

ROM - Reduced-Order Modeling

U - Uranium

PA - Performance Assessment
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▪ Dynamic Mode Decomposition

• A dimensionality reduction algorithm developed for time-series datasets 

Physics-coupled Reduced-Order Modeling (ROM) with 
Dynamic Mode Decomposition (DMD)

Lu and Tartakovsky, in prep
ROM – Reduced-Order Modeling

DMD - Dynamic Mode Decomposition
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Compute K(p) and B(p) based on the ensemble data 

Define ROM

▪ Dynamic Mode Decomposition

• A dimensionality reduction algorithm developed for time-series datasets 

Lu and Tartakovsky, in prep

Physics-coupled Reduced-Order Modeling (ROM) with 
Dynamic Mode Decomposition (DMD)
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▪ Preliminary Results

• Co-estimation of {U, Ca, pH}

Physics-coupled ROM:DMD
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▪ Demonstrated a workflow to connect THC to PA
• Temporal evolution of buffer-averaged Kd (mass-preserved Kd) 

• Emulator for buffer-averaged Kd

✓ NN/RF comparison

✓ Parameter domain splitting for capturing non-linearity

• UQ with Kd from THC

✓ Geochemical parameters → PFLOTRAN-predicted U concentrations

▪ Developing new surrogate models for THC 
• Emulator based on Dynamics Mode Decomposition 

• Spatially/temporally resolved U concentrations within the buffer (--> flux-
preserved Kd) 

Summary

THC - Thermal-Hydrological-Chemical

PA - Performance assessment

Kd = Distribution coefficient
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