


Spent Fuel and Waste Science and Technology (SFWST)







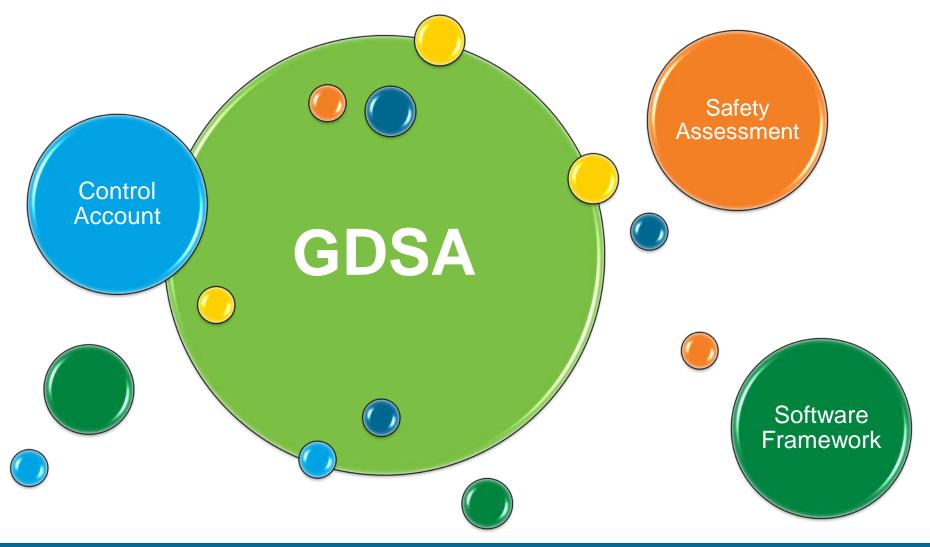


#### Geologic Disposal Safety Assessment (GDSA) Overview

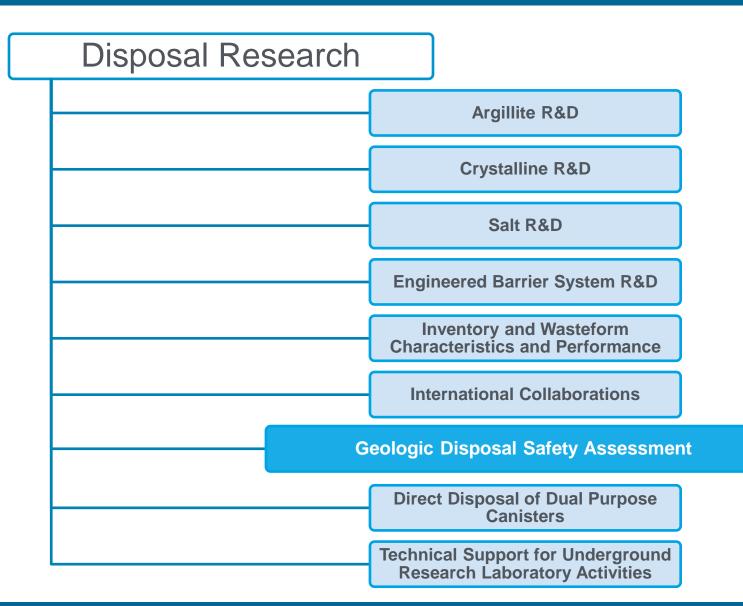
U.S. Nuclear Waste Technical Review Board Fall Workshop November 3-4, 2021 Emily Stein Sandia National Laboratories

**ENERGY** 

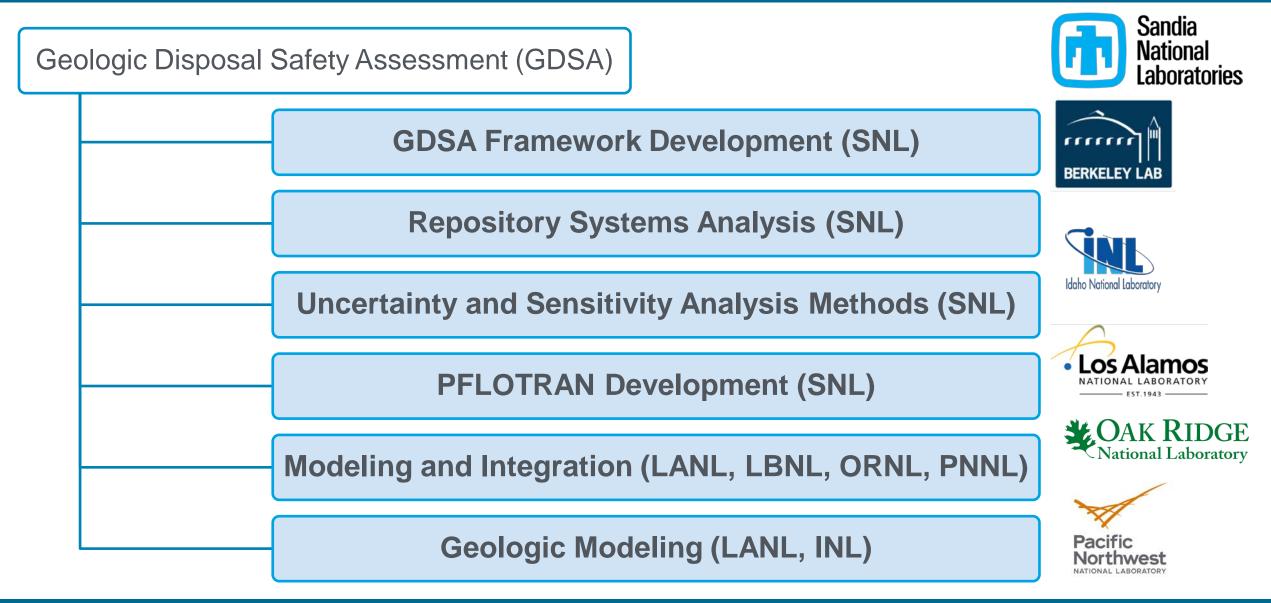
NISA


Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

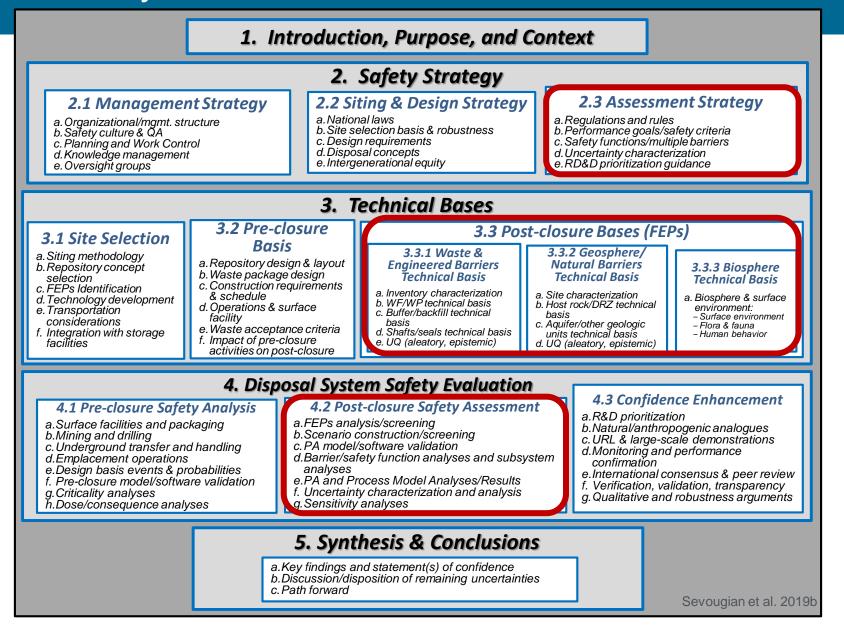
SAND2021-13709 PE




- What is GDSA?
- Objectives
- Prioritization
- Challenges
- 5-year Plan


## What is Geologic Disposal Safety Assessment or GDSA?




#### Spent Fuel and Waste Science and Technology Disposal Research Control Accounts



## Scope of the GDSA Control Account



#### **Post-closure Safety Assessment**



# Assumptions for GDSA Development

- Individual performance standard
- Probabilistic risk assessment
- Separation of aleatory and epistemic uncertainty
- Biosphere may be prescribed
- Prioritize features, events, and processes that are likely to occur regardless of site and design specifics
- Provide a quantitative estimate of the performance of the disposal system for comparison to regulatory standards

#### Assessment Strategy

a. Regulations and rules

C.

- b. Performance goals/safety criteria
  - Safety functions/multiple barriers
- d. Uncertainty characterization
- e. RD&D prioritization guidance

#### Post-closure Technical Bases

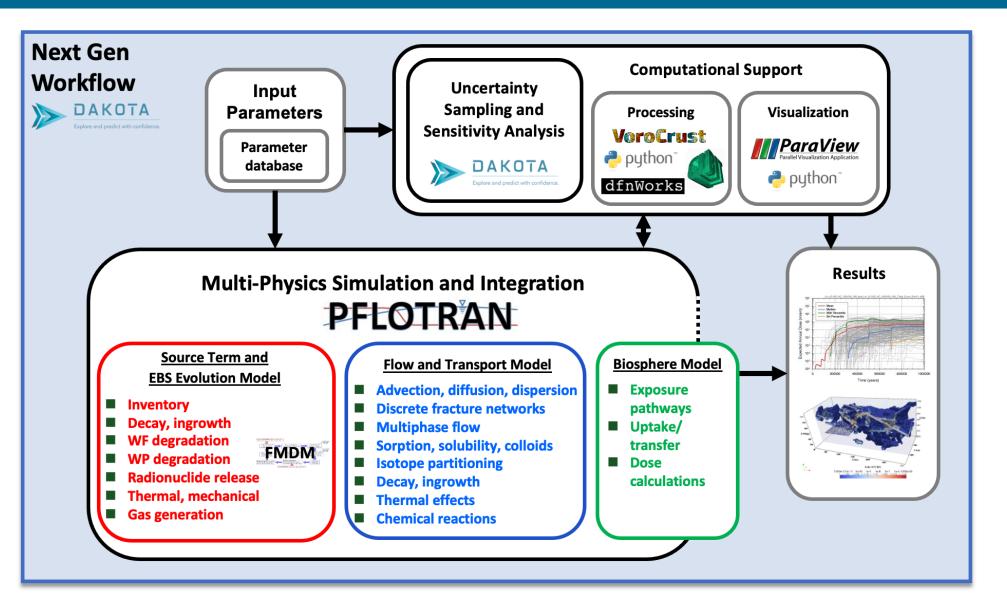
#### Waste & Engineered Barrier

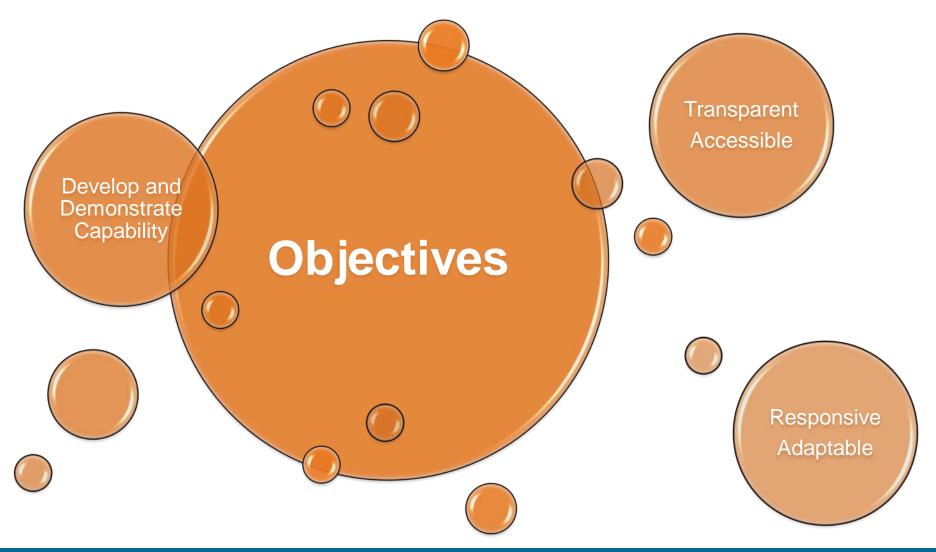
- a. Inventory characterization
- b. Wasteform and waste package
- c. Buffer and backfill
- d. Shafts and Seals
- e. Aleatory and epistemic uncertainty

#### Geosphere/Natural Barrier

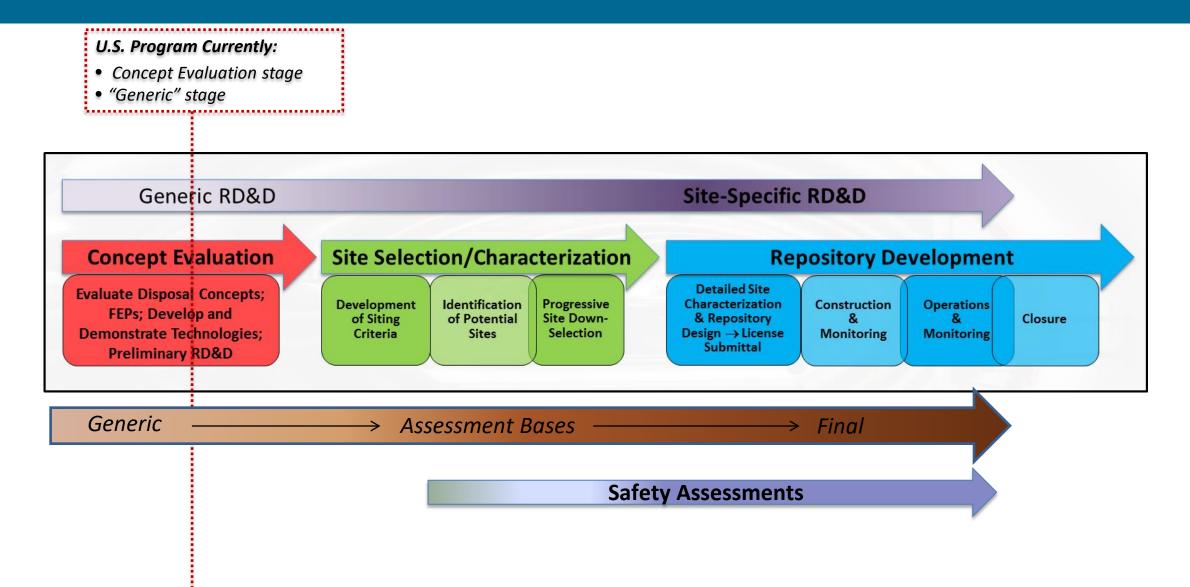
- a. Site characterization
- b. Host rock and disturbed rock zone
- c. Aquifer and other geologic units
- d. Aleatory and epistemic uncertainty

#### **Biosphere**

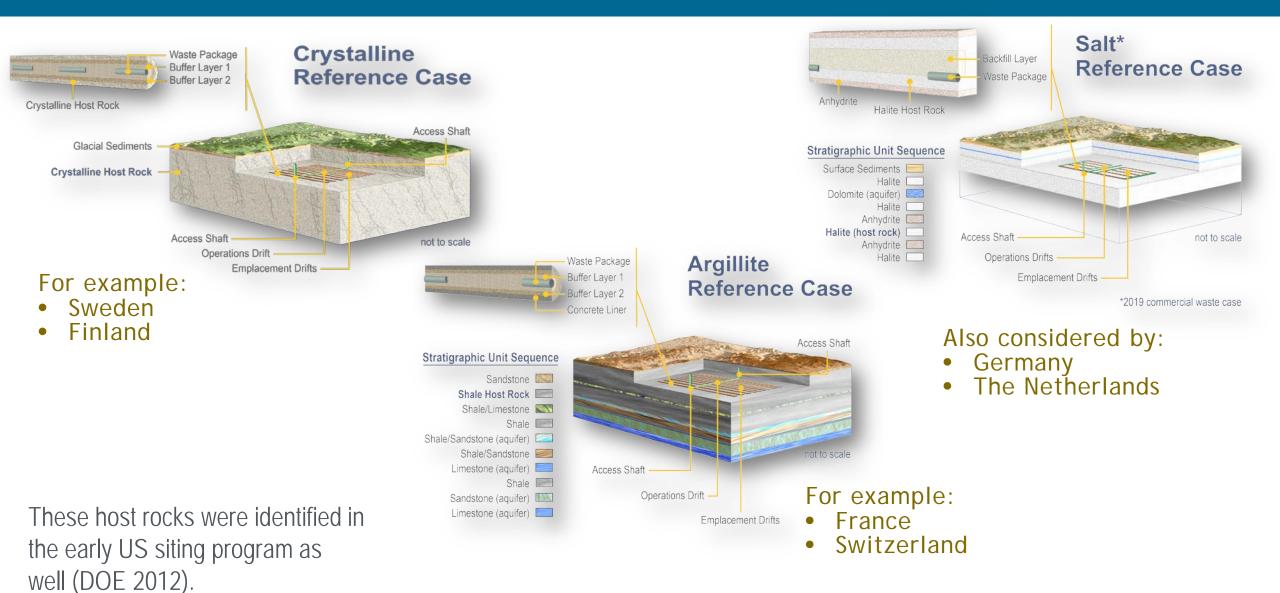

- a. Surface environment
- b. Flora and fauna
- c. Human behavior


- Post-closure Safety Assessment
- a. FEPs analysis/screening
  - Scenario construction/screening
  - PA model/software validation
- d. Barrier and subsystem analyses
- e. PA and process model analyses
  - Uncertainty characterization and analysis
  - Sensitivity analysis

b.

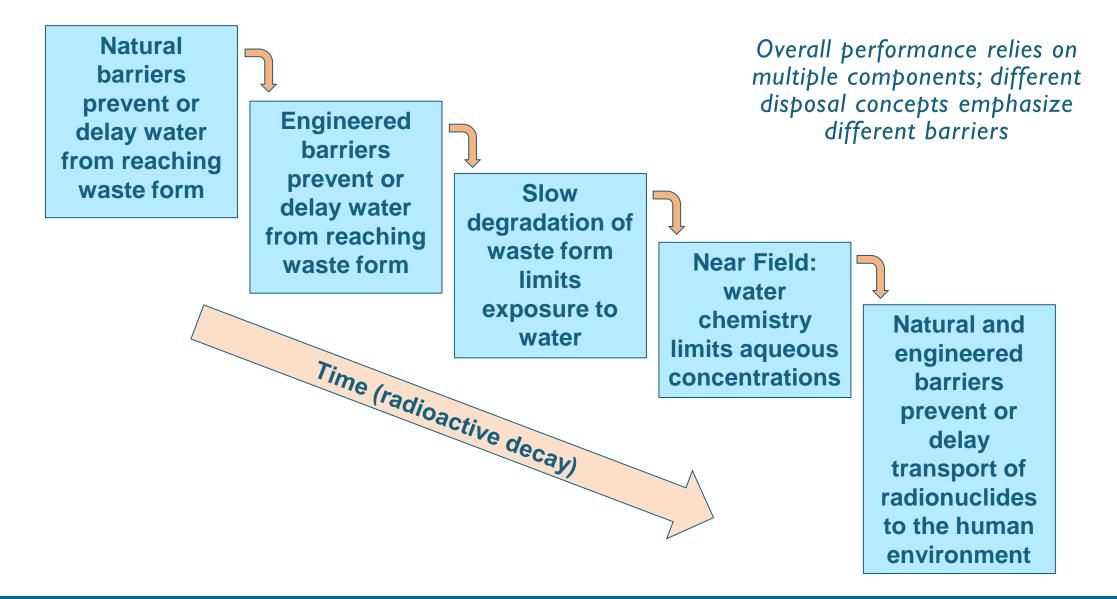

C.

## GDSA Framework






# Stages of a Deep Geologic Disposal Program




## **Generic Host Rock Systems**



SFWST

# **Multiple Barriers**



# Why GDSA Framework?

- Be flexible to changes in design, geometry, or geology
- Represent three-dimensional geometry
- Facilitate two-way coupling
- Integrate process models transparently
- Leverage high-performance computing to
  - Allow more detailed representation
  - Reduce computational costs (of all of the above)
  - Enable probabilistic calculations (given the computational cost)
- State-of-the-art

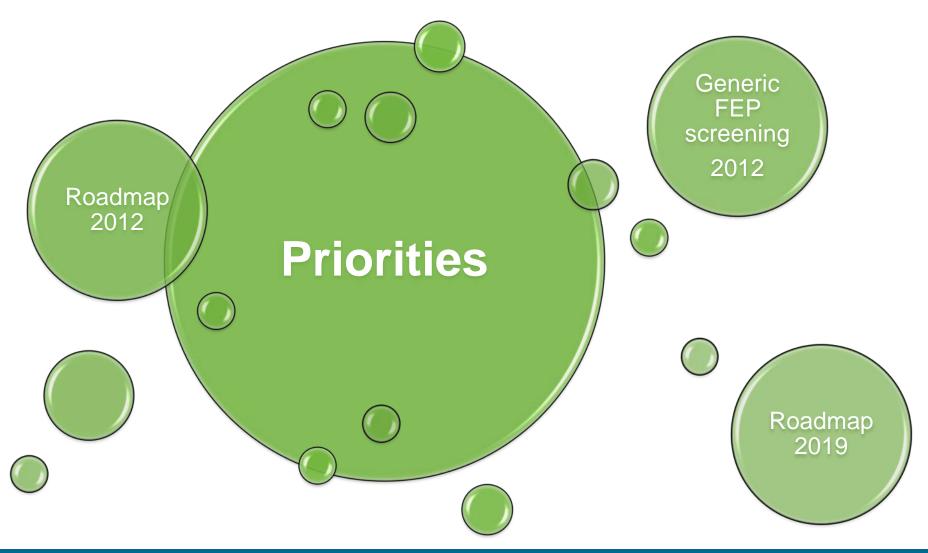
energy.gov/ne

# Why GDSA Framework?

# PFLOTRAN

- High-performance computing
- Open source
- Sequentially coupled flow and transport
- Global implicit reactive transport




- High-performance computing
- Open source
- Latin hypercube sampling
- Aleatory and epistemic uncertainty

# **GDSA** Objectives

Develop and demonstrate capability

• Geologic modeling, multiphysics simulation, uncertainty and sensitivity analysis, workflow that is

- Responsive to advances in
  - Process understanding, computer hardware and software, simulation and analysis methods
- Adaptable to
  - Generic site and design constraints
  - Site- and design-specific technical bases
  - Evolution of the safety assessment strategy
- Transparent
  - Developed and distributed in an open-source environment with public documentation
- Accessible
  - Laptop, workstation, and high-performance computing



# **Evolution of GDSA Framework and Reference Cases**

| with PFL<br>DAKOTA                                                                                                         | • Salt reference case<br>with PFLOTRAN &<br>DAKOTA<br>(Freeze et al. 2013) |   | <ul> <li>Shale reference<br/>case</li> <li>Fuel Matrix<br/>Degradation (FMD)</li> <li>Glass dissolution<br/>(Mariner et al. 2015)</li> </ul>               |                                  | <ul> <li>Well water ingestion</li> <li>QA test suite</li> <li>Analytical<br/>derivatives<br/>(Mariner et al. 2017)</li> </ul>        |                                    | Update<br>al. 2019a)<br>perature<br>ulations<br>stress<br>al. 2019b)                                                                                                                           | <ul> <li>Dual porosity</li> <li>Criticality <ul> <li>(Nole et al. 2021)</li> </ul> </li> <li>International <ul> <li>sensitivity</li> <li>analysis report</li> <li>(Swiler et al. 2021)</li> </ul> </li> </ul> |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2012 2013<br>• Roadmap<br>(DOE 2012)<br>• Requirements<br>(Freeze & Vaughn 2012)<br>• Generic FEPs<br>(Vaughn et al. 2012) | • Multiphase<br>added to<br>PFLOTRAN<br>(Sevougian et al                   | N | <ul> <li>2016</li> <li>Crystalline<br/>reference</li> <li>dfnWorks</li> <li>Isotope pa</li> <li>Wasteforn<br/>model</li> <li>(Mariner et al. 2)</li> </ul> | case<br>artitioning<br>n process | <ul> <li>2018</li> <li>Variance-lisensitivity</li> <li>Stepwise regression</li> <li>Alluvial recase (Mariner et al. 2019)</li> </ul> | analysis<br>linear<br>า<br>ference | <ul> <li>• FMD surre<br/>(Mariner et al.</li> <li>• Advanced</li> <li>• Next Gen<br/>(Mariner et al.</li> <li>• DECOVAL<br/>(LaForce et al.</li> <li>• Biosphere<br/>(Condon et al.</li> </ul> | 2020a)<br>d solvers<br>Workflow<br>2020b)<br>LEX Task F<br>. 2020)<br>e model                                                                                                                                 |

# Planning/Prioritization Disposal Research (DR) Activities Overview

- Used Fuel Disposition (UFD) Campaign 2012 Roadmap
  - Features, Events, and Processes (FEP) gap assessment synthesis
  - Synthesize into High Priority Topics for UFD Campaign work planning
  - 2012 Roadmap Report (Rev. 01; 2012)
- 2019 Roadmap Update
  - Review/prioritize DR Activities for progress, gaps, and recent Program Direction
    - Begin assessment of DR R&D Program in FY2017
  - 2019 Roadmap Update Report (Rev. 01; 2019)
- Development of SFWST Disposal Research Five-year Plan (2020, 2021)
  - Incorporate/address updated priorities
  - Identify short-term primary objectives (1-2 years; relatively certain)
  - Provide longer-term vision (3-5 years; general guide)

# 2012 Roadmap – Cross Cutting Issues

#### Disposal System Modeling (High)

- Enable risk-informed, probability-based performance assessment
- Provide a capability for evaluating disposal system performance to inform R&D prioritization
- Support simple and complex integrated generic disposal system models
- Site Screening and Selection Tools (Medium)
  - Unified geospatial database and visualization tool

energy.gov/ne

# 2012 Generic FEP screening

#### Source (Inventory and Waste Form)

- Radionuclide inventory (heat generation, decay and ingrowth)
- Waste form degradation (dissolution processes)
- Gas generation
- Radionuclide release and transport (mobilization, early release [e.g., from gap and grain boundaries], precipitation/dissolution) Near Field (Waste Package, Buffer, Backfill, Seals/Liner, and Disturbed Rock Zone (DRZ))
- Waste package degradation (corrosion processes, mechanical damage, early failures)
- Evolution/degradation of engineered barrier system (EBS) components and DRZ
- Effects from rockfall, drift collapse (e.g., salt creep)
- Fluid flow and radionuclide transport (advection, dispersion, diffusion, sorption, decay and ingrowth)
- Chemical interactions (aqueous speciation, mineral precipitation/dissolution, reaction with degraded materials, surface complexation, radiolysis)
- Thermal effects on flow and chemistry
- Effects from disruptive events (seismicity, human intrusion)

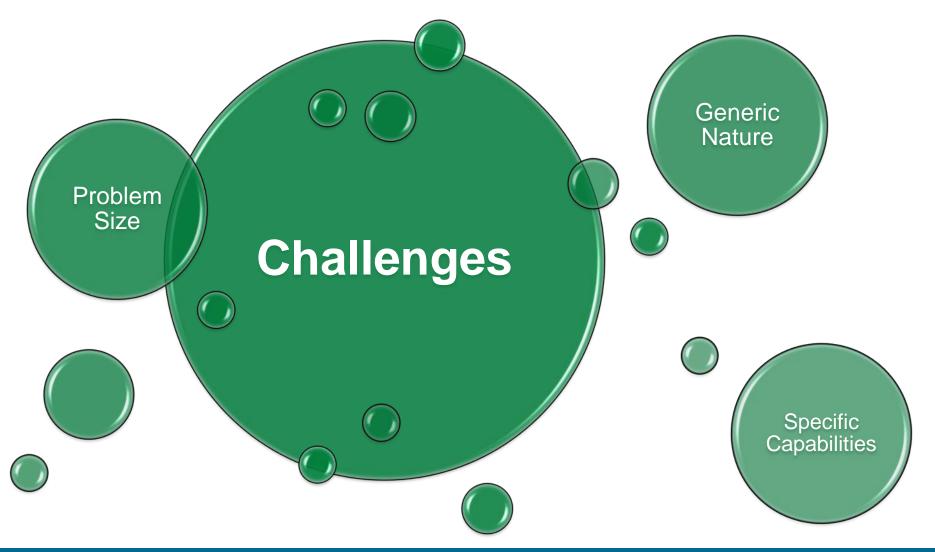
#### Far Field (Host Rock and Other Units)

- Fluid flow and radionuclide transport (advection, dispersion, diffusion, sorption, decay and ingrowth)
- Effects of fracture flow (e.g., dual porosity/permeability, discrete fracture)
- Groundwater chemistry

#### **Receptor (Biosphere)**

- Dilution due to mixing of contaminated and uncontaminated waters
- Receptor characteristics (basis for converting radionuclide concentrations in groundwater to dose)

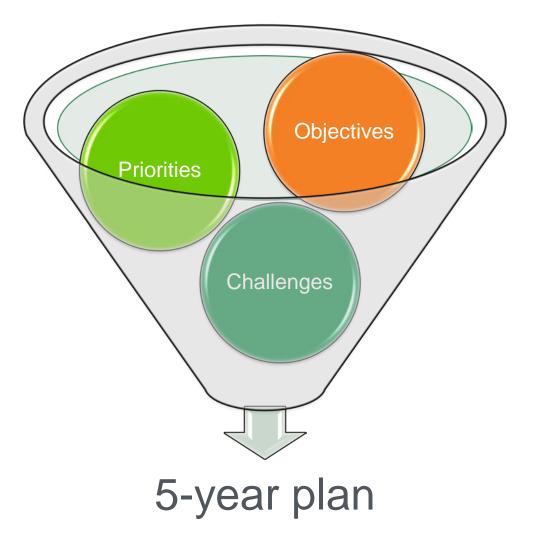
Vaughn et al. 2012


# 2019 Roadmap Update – High Impact R&D Topics

#### High-temperature impacts

- Buffer and seal studies
- Coupled processes in salt
- Gas flow in the engineered barrier system
- Criticality
- Waste package degradation
- In-package chemistry
- Generic performance assessment models
- Radionuclide transport

Sevougian et al. 2019


energy.gov/ne



# Challenges

- Generic nature of the problem
- Size of problem
  - 3D comprehensive model domain
  - Long time scale (1 million years)
  - Number of radionuclides
  - Uncertainty propagation
- Resolution of near-field processes
- Specific modeling capabilities
  - High-temperature multiphase flow
  - Computationally efficient implementation of the Fuel Matrix Degradation Model
- Workflow

### Objectives, Priorities, and Challenges Shape the 5-year Plan



## Research Thrusts in 5-Year Plan

- Advanced simulation capability
- State-of-the-art uncertainty and sensitivity analysis methods
- Traceable, user-friendly workflow
- Repository systems analysis
- Geologic framework modeling



# **Advanced Simulation Capability**

#### Recent Accomplishments

- Advanced linear and nonlinear solvers
- Waste package criticality
- High-temperature effects
- Fracture-matrix diffusion
- Surrogates for the Fuel Matrix Degradation Model
- Biosphere prototype

#### Next 1-2 Years

- High-temperature simulation capability
- Material-specific waste package degradation models
- Buffer and backfill evolution
- Biosphere pathways
- dfnWorks capability
- Geologic meshing

# **Advanced Simulation Capability**

#### Recent Accomplishments

- Advanced linear and nonlinear solvers
- Waste package criticality
- High-temperature effects
- Fracture-matrix diffusion
- Surrogates for the Fuel Matrix Degradation Model
- Biosphere prototype

#### Next 1-2 Years

- High-temperature simulation capability
- Material-specific waste package degradation models
- Buffer and backfill evolution
- Biosphere pathways
- dfnWorks capability
- Geologic meshing



Mariner, Nole, Hyman, & Condon

# Uncertainty and Sensitivity Analysis (U/SA)

#### Recent Accomplishments

- Advance U/SA of crystalline reference case
- Led international comparison of SA methods
- Demonstrate potential of multifidelity methods

#### Next 1-2 Years

- Increase computational efficiency
- Increase understanding of system behavior
- Metrics for assessing goodness of surrogates
- International best-practices

# Uncertainty and Sensitivity Analysis (U/SA)

#### Recent Accomplishments

- Advance U/SA of crystalline reference case
- Led international comparison of SA methods
- Demonstrate potential of multifidelity methods

#### Next 1-2 Years

- Increase computational efficiency
- Increase understanding of system behavior
- Metrics for assessing goodness of surrogates
- International best-practices



## Workflow

#### Recent Accomplishments

- Next Generation Workflow (NGW)
- Expansion of software verification testing ("QA test suite")

- Next 1-2 Years
  - Increase automation through NGW
  - Release the "QA test suite"
  - Develop geologic meshing workflow

## Workflow

#### Recent Accomplishments

- Next Generation Workflow (NGW)
- Expansion of software verification testing ("QA test suite")

- Next 1-2 Years
  - Increase automation through NGW
  - Release the "QA test suite"
  - Develop geologic meshing workflow



# **Repository Systems Analysis**

#### Recent Accomplishments

- Conceptual models and simulations that account for high-temperature impacts
- Initiate 4-year international performance assessment comparison (DECOVALEX-2023 Task F)
- Growing collaboration with Germany, Netherlands, and United Kingdom regarding salt FEPs and scenario development

#### Next 1-2 Years

- Simulation and analysis of salt and crystalline reference cases developed in Task F
- Drive development of process models
  - Bentonite evolution
  - Waste package degradation
  - Salt consolidation and creep

# **Repository Systems Analysis**

#### Recent Accomplishments

- Conceptual models and simulations that account for high-temperature impacts
- Initiate 4-year international performance assessment comparison (DECOVALEX-2023 Task F)
- Growing collaboration with Germany, Netherlands, and United Kingdom regarding salt FEPs and scenario development

#### Next 1-2 Years

- Simulation and analysis of salt and crystalline reference cases developed in Task F
- Drive development of process models
  - Bentonite evolution
  - Waste package degradation
  - Salt consolidation and creep



# Topics for this meeting

- GDSA Framework Mariner
- PFLOTRAN Nole
- dfnWorks Hyman
- Fuel Matrix Degradation Model Mariner
- Biosphere Model Condon
- Uncertainty and Sensitivity Analysis Swiler
- Reference Case Simulation LaForce
- DECOVALEX-2023 Task F Stein

#### References

Condon, C. A., B. A. Napier, S. Ghosh, W. C. Weaver and C. B. Varnum-Lowry, 2020. GDSA Biosphere Model Software Requirements Document. PNNL-30280, Pacific Northwest National Laboratory, Hanford, WA DOE, 2012. Used Fuel Disposition Campaign Disposal Research and Development Roadmap. FCRD-USED-2011-000065 Rev 1, U.S. Department of Energy, Washington, D.C.

- Freeze, G. A. and P. Vaughn, 2012. Development of an Advanced Performance Assessment Modeling Capability for Geologic Disposal of Nuclear Waste: Methodology and Requirements. SAND2012-10208, Sandia National Laboratories, Albuquerque, NM
- Freeze, G. A., W. P. Gardner, P. Vaughn, S. D. Sevougian, P. E. Mariner, V. Mousseau and G. E. Hammond, 2013. *Enhancements to Generic Disposal System Modeling Capabilities*. FCRD-UFD-2014-000062; SAND2013-10532P, Sandia National Laboratories, Albuquerque, NM
- LaForce, T., K. W. Chang, F. V. Perry, T. S. Lowry, E. Basurto, R. S. Jayne, D. M. Brooks, S. Jordan, E. R. Stein, R. C. Leone and M. Nole, 2020. GDSA Repository Systems Analysis Investigations in FY2020. SAND2020-12028R, Sandia National Laboratories, Albuquerque, NM

Mariner, P. E., W. P. Gardner, G. Hammond, S. D. Sevougian and E. R. Stein, 2015. Application of Generic Disposal System Models. FCRD-UFD-2015-000126; SAND2015-10037R, Sandia National Laboratories, Albuquerque, NM

- Mariner, P. E., E. R. Stein, J. M. Frederick, S. D. Sevougian, G. E. Hammond and D. G. Fascitelli, 2016. Advances in Geologic Disposal System Modeling and Application to Crystalline Rock. FCRD-UFD-2016-000440/SAND2016-9610R, Sandia National Laboratories, Albuquerque, NM
- Mariner, P. E., E. R. Stein, J. M. Frederick, S. D. Sevougian and G. E. Hammond, 2017. Advances in Geologic Disposal System Modeling and Shale Reference Cases. SFWD-SFWST-2017-000044 / SAND2017-10304R, Sandia National Laboratories, Albuquerque, NM
- Mariner, P. E., E. R. Stein, S. D. Sevougian, L. J. Cunningham, J. M. Frederick, G. E. Hammond, T. S. Lowry, S. Jordan and E. Basurto, 2018. Advances in Geologic Disposal Safety Assessment and an Unsaturated Alluvium Reference Case. SFWD-SFWST-2018-000509; SAND2018-11858R, Sandia National Laboratories, Albuquerque, NM
- Mariner, P. E., T. M. Berg, C. Chang, B. J. Debusschere, R. C. Leone and D. T. Seidl, 2020. Surrogate Model Development of Spent Fuel Degradation for Repository Performance Assessment. SAND2020-10797, Sandia National Laboratories, Albuquerque, NM
- Mariner, P. E., M. Nole, E. Basurto, T. M. Berg, K. W. Chang, B. J. Debusschere, A. C. Eckert, M. S. Ebeida, M. Gross, G. Hammond, J. Harvey, S. Jordan, K. L. Kuhlman, T. LaForce, R. C. Leone, W. C. McLendon, M. M. Mills, H. Park, F. V. Perry, A. Salazar, D. T. Seidl, S. D. Sevougian, E. R. Stein and L. P. Swiler, 2020. Advances in GDSA Framework Development and Process Model Integration. SAND2020-10787R, Sandia National Laboratories, Albuquerque, NM
- Nole, M., R. C. Leone, H. Park, M. Paul, A. Salazar, G. Hammond and P. Lichtner, 2021. PFLOTRAN Development FY2021. SAND2021-8709R, Sandia National Laboratories, Albuquerque, NM

Sassani, D., 2020. Technical Approach and Prioritization of Activities. U. S. Nuclear Waste Technical Review Board Fall 2020 Meeting, December 2-3, 2020, Virtual Meeting

- Sassani, D., J. Birkholzer, C. Camphouse, G. A. Freeze and E. R. Stein, 2021. SFWST Disposal Research R&D 5-Year Plan FY2021 Update. M2SF-21SN010304054; SAND2021-12491R, Sandia National Laboratories, Albuquerque, NM
- Sevougian, S. D., G. A. Freeze, W. P. Gardner, G. E. Hammond and P. E. Mariner, 2014. *Performance Assessment Modeling and Sensitivity Analyses of Generic Disposal System Concepts*. FCRD-UFD-2014-000320; SAND2014-1765, Sandia National Laboratories, Albuquerque, NM
- Sevougian, S. D., P. E. Mariner, L. A. Connolly, R. J. MacKinnon, R. D. Roger, D. C. Dobson and J. L. Prouty, 2019. DOE SFWST Campaign R&D Roadmap Update. M2SF-19SN010304042 SAND2019-5179R, Sandia National Laboratories, Albuquerque, NM
- Sevougian, S. D., E. R. Stein, T. LaForce, F. V. Perry, T. S. Lowry, L. J. Cunningham, M. Nole, C. B. Haukwa, K. W. Chang and P. E. Mariner, 2019. GDSA Repository Systems Analysis Progress Report. M2SF-19SN010304051 SAND2019-5189R, Sandia National Laboratories, Albuquerque, NM
- Swiler, L. P., E. Basurto, D. M. Brooks, A. C. Eckert, R. C. Leone, P. E. Mariner, T. Portone, M. L. Smith and E. R. Stein, 2021. Uncertainty and Sensitivity Analysis Methods and Applications in GDSA Framework (FY2021). Sandia National Laboratories, Albuquerque, NM
- Vaughn, P., G. A. Freeze, J. Lee, S. Chu, K. D. Huff, W. M. Nutt, T. Hadgu, R. Rogers, J. L. Prouty, E. L. Hardin, B. Arnold, E. Kalinina, W. P. Gardner, M. Bianchi, H. H. Liu and J. Birkholzer, 2012. *Generic Disposal System Model: Architecture, Implementation, and Demonstration.* FCRD-UFD-2012-000430; SAND2013-1539P, Sandia National Laboratories, Albuquerque, NM