Drying of ASNF Surrogates ASNF Extended Dry Storage Project

Collaboration with:

Idaho National Laboratory, Savannah River National Laboratory, Holtec International, and University of South Carolina

Nuclear Waste Technical Review Board Meeting

August 24, 2021

Rebecca Smith

Staff Engineer

Task 5 Overview: Engineering Scale Drying Experiment

- Objectives (Recipe for Drying)
 - ASNF Extended Dry Storage (vent v. seal)

planning &

coordination

chemistry surrogate

fab work for major components

training facility space and operation

HPC resources,

model integration

Participant Roles (Collaborators)

Holtec

INL

2

Basket & False Bottom for improved mass transfer

- Remove water (bulk, physisorbed, chemisorbed)
- Compare forced helium & vacuum processes

University of South Carolina

- experiment design
- instrumentation & analysis
- objective oversight of testing
- modeling & validation

Experiment Concept

ASNF Chemistry Surrogate suspension & immersion

Simulated Decay Heat

Bulk Water added by syringe

Basket Corner 3 Thermocouples

Mapping instrument data & chemistry surrogate performance against models

Comparison of Thermal Performance

Comparison of Internal Vessel Moisture

5

Comparison of Residual Moisture (continued)

6

Future Work (Outstanding Issues)

Recommendations

- Confirm performance with optimal siphon tube location
- Refinement of vacuum drying model
- Use of chiller during FHD operation
- Improve heat supply to vessel wall
- Include spacer disk & bulk water trays in model
- Consider fuel assembly orientation (model asymmetrical load)
- Additional validation work to narrow differences between the models and experiments
- Project schedule? Nominally a two-year effort to address all of the above.

Conclusions

- Removal of chemisorbed water is relatively insensitive to the duration of drying (FHD and Vacuum Drying TGA results do not correlate particularly closely with run durations tested)
- Removal of chemisorbed water is very sensitive to temperature, particularly approaching 220°C
- Consequently, FHD is significantly more effective at the removal of chemisorbed water
- Drying process models provide better predictive data for FHD than for Vacuum Drying and there are opportunities for improvement

Acknowledgements

This work was completed in collaboration with many partners.

- Recognition of select contributors

 UofSC
 - Prof. Travis Knight (Experiment Design)
 - Nate Cooper (FHD Modeling)
 - Robert Demuth (SEM & TGA)
 - Jonathan Perry (Conduct of Experiment, Vacuum Drying Model, Validation of Models)

- Holtec Government Services

- Nick Parisi (Project Manager)
- Garrick Stafford (Engineering Support)

- INL

- Alex Abboud (Modeling Consultant)
- Tim Yoder (Production of Chemical Surrogate)
- Review and consultation on this endeavor by Bob Sindelar and Anna d'Entremont of Savannah River National Laboratory

References

COOPER, N., et al., "Development of a CFD Model for the Drying of Aluminum-Clad Spent Nuclear Fuel," American Nuclear Society Characterization, Storage, and Transportation of Used Nuclear Fuel, *ANS Transactions*, Vol. 122, No. 1, pp. 66-67, June 2020.

COOPER, N., "Development of a CFD Model for the Drying of Aluminum-Clad Spent Nuclear Fuel." Master's Thesis, University of South Carolina, 2020.

KNIGHT, T. W., et al., "Aluminum-clad Spent Nuclear Fuel Engineering Scale Drying Experiment Design," INL/EXT-19-56017, Rev. 0, August 2019.

PERRY, J. E., "Experimental Evaluation of Drying Spent Nuclear Fuel for Dry Cask Storage through Vacuum Drying and Forced Helium Dehydration" Master's Thesis, University of South Carolina, 2021 (unpublished).

PERRY, J. E., et al.,, "Engineering-Scale Drying of Aluminum-clad Spent Nuclear Fuel: Experiment Report," INL/EXT-21-62416, draft in review.

SMITH, R. E., "Aluminum Clad Spent Nuclear Fuel Task 5: Oxide Layer Response to Drying Experiment Test Plan," INL/EXT-19-54019, Rev. 1, August 2019.

SMITH, R. E., et al., "ASNF Engineering Scale Drying Experiment Acceptance Criteria for Fabricated Items," INL/MIS-20-58551, Rev. 1, July 2020.

SMITH, R. E., et al., "ASNF Engineering Scale Drying Experiment System Operability Functional Requirements," INL/MIS-20-58841, Rev. 1, August 2020.

Rebecca E. Smith

Idaho National Laboratory

Rebecca.Smith@inl.gov

(208) 526-3874

Idaho National Laboratory

WWW.INL.GOV

Alternate Views & Extras

TGA Results

Control and Vacuum Test show same TGA trend FHD Tests (for >220°C) show less chemisorbed water remains

FHD Drying Behavior

Vacuum Drying Behavior

Comparison of FHD and Model – Thermal

Comparison of Vacuum Drying & Model – Thermal Performance

Vacuum Model Assembly Averages 15-minute holds, 100°C wall, no water tray

19

Comparison of FHD and Model – Moisture

Comparison of Vacuum Drying & Model – Moisture

Vacuum Test 8 Residual Bulk Water

Vacuum Drying Behavior

Engineering Scale Drying Experiment: Drying Vessel and Type 1a Basket

- Ports for instrumentation, viewing
- Basket false bottom to promote mass transfer

