August 24th, 2021

Gregory P. Horne Center for Radiation Chemistry Research

Task 2: Radiolytic Gas Generation due to ASNF Corrosion Layers

LRS Number: INL/MIS-21-63682 Rev:000

INL Team: E.H. Parker-Quaife, C. Rae, T.M. Copeland-Johnson, C.D. Pilgrim, E.T. Zell, M.E. Woods, and G.P. Horne.

SRNL Team: Christopher Verst, Charles Crawford, Dave Herman, and Robert Sindelar.

Radiolytic Gas Generation due to ASNF Corrosion Layers

- Thermal and chemical corrosion of Aluminum-clad Spent Nuclear Fuel (ASNF) is well understood.
- Radiation-induced H₂ gas generation from the attendant AI corrosion layer(s) is less understood for ASNF.
- Radiolytic generation of H₂ from solid and gaseous sources presents potential challenges for the long-term storage of ASNF (>50 years) in the form of:
 - over pressurization
 - cladding embrittlement
 - formation of flammable gas mixtures

- B. Bonin, M. Colin, and A. Dutfoy, J. Nucl. Mater., 2000, 281, 1.
- R.P. Gangloff and B.P. Somerday, Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, Volume 1 the Problem, its Characterization and Effects on Particular Alloy Classes. Elsevier New York, 2012

Radiation-Induced H₂ Production Pathways

Water Radiolysis

 $H_2O \twoheadrightarrow e_{aq}^-, H^{\bullet}, OH, H_2, H_2O_2, H_{aq}^+$

Water Processes

$$H_2O^* \rightarrow H_2 + O$$

$$e_{aq}^- + e_{aq}^- + 2H_2O \rightarrow H_2 + 2OH^-$$

$$e_{aq}^- + H^* + H_2O \rightarrow H_2 + OH^-$$

$$e_{aq}^- + H_{aq}^+ \rightarrow H^*$$

$$H^* + H_2O \rightarrow H_2 + OH^-$$

$$H^* + H_2O \rightarrow H_2 + OH^-$$

Surface Processes

- G.V. Buxton, C.L. Greenstock, W. Helman, and A.B. Ross, J. Phys. Chem. Ref. Data, 1988, 17, 513.
- B.H. Milosavljevic and J.K. Thomas, J. Phys, Chem. B, 2003, 107, 11907.
- J.K. Thomas, Chem. Rev., 2005, 105, 1683.
- J.A. LaVerne and P.L. Huestis, J. Phys. Chem. C, 2019, 123 (34), 21005.

Task 2 Research Goal

Aim

 Provide quantitative experimental data and insight into the rate of H₂ generation from the attendant corrosion layer on aluminum alloy coupons to inform complimentary modelling efforts.

Objectives

- Evaluate radiation-induced H₂ generation as a function of:
 - absorbed gamma dose
 - corrosion layer composition
 - gaseous environment
 - relative humidity
 - temperature

RU-1 (<u>AI-1100</u>): 8 years in-reactor at ~70°C; ~30 years dry storage; 0.2-25 μ m thick corrosion layer of gibbsite (P) and possibly boehmite (S).

Experimental Methodology

- J.A. LaVerne and R.H. Schuler, J. Phys. Chem., 1984, 88 (6), 1200.
- J.A. LaVerne and P.L. Huestis, J. Phys. Chem. C, 2019, 123 (34), 21005.
- T.E. Lister, Vapor Phase Corrosion Testing of Pretreated Al1100, INL/EXT-18-52249, 2018.
- C. Vargel, Chapter B.1 Introduction to The Corrosion of Aluminium in Vargel, C. (Eds.), Corrosion of Aluminium, Elsevier, 2004.

Corrosion Layer Composition

Non-Irradiated

H₃PO₄ Acid Strip

Average corrosion layer thickness of $5.3 \pm 0.3 \mu m$.

- Parker-Quaife, E.H.; Verst, C.; Heathman, C.R.; Zalupski, P.Z.; Horne, G.P., Radiation Physics and Chemistry, 2020, 177, 109117.
- Lister, T.E., 2018. Vapor Phase Corrosion Testing of Pretreated Al1100, INL/EXT-18-52249.
- Schoen, R., Roberson. C.E., 1970. Structures of Aluminum Hydroxide and Geochemical Implications. The American Mineralogist vol. 55.
- Misra, C., 2000. Aluminum oxide (alumina), hydrated. Kirk-Othmer Encyclopedia of Chemical Technology.

Absorbed Gamma Dose Dependence

- The volume of H_2 increased with absorbed gamma dose.
- No H₂ was detected in the absence of a AA1100 coupon at any investigated humidity (0%, 50%, and 100%).

Gaseous Environment Dependence

- No H₂ was quantified in the presence of Air, O₂ scavenges radicals (e.g., e_{aq}⁻ and H[•]).
- Nitrogen and Helium play a minor role in H₂ inhibition, attributed to gas phase radical processes.

Gaseous Environment Dependence

- For example, irradiation of He atmospheres promotes Penning Ionization: He* + H₂ → He + H₂⁺ + e⁻.
- Argon affords the highest yield of H₂ as its ionization potential is "just right" (E°_{Argon} = 15.76 V vs. E°_{H2} = 15.4 V).

Parker-Quaife, E.H.; Verst, C.; Heathman, C.R.; Zalupski, P.Z.; Horne, G.P., Radiation Physics and Chemistry, 2020, 177, 109117.

Oxyhydroxide Corrosion Layer Dependence

- Corrosion-induced oxyhydroxide layers provide >OH₂/>OH⁻/>OH groups for promotion of H₂ formation.
- Parker-Quaife, E.H.; Verst, C.; Heathman, C.R.; Zalupski, P.Z.; Horne, G.P., Radiation Physics and Chemistry, 2020, 177, 109117.

Temperature Dependence

- Irradiation at 100 °C gave H₂ yields similar to ambient temperature values.
- Irradiation at 200 °C showed a significant increase (3-4-fold) in H₂ production.
- A combination of temperaturedriven phenomena may be responsible for the higher yield of H₂ at 200 °C:
 - phase transformation of corrosion layers starting at ~170 °C.
 - more efficient release of H[•] and H₂ from boehmite layers

- J.A. Kaddissy, S. Esnouf, D. Durand, D. Saffre, E. Foy, and J.-P. Renault, J. Phys. Chem. C, 2017, 121, 6365.
- M.V. Glazoff and T.E. Lister, INL/EXT-18-51694, Idaho National Laboratory, 2018.
- J.A. LaVerne and P.L. Huestis, J. Phys. Chem. C, 2019, 123, 21005.

L. Lundberg, ERA-NRE-94-096, EG&G, 1994.

Humidity Dependence

- Higher H₂ yields with increasing relative humidity.
- Direct water radiolysis and energy migration from the irradiated coupon to surface bound water molecules.

- J.A. Kaddissy, S. Esnouf, D. Durand, D. Saffre, E. Foy, and J.-P. Renault, J. Phys. Chem. C, 2017, 121, 6365.
- M.V. Glazoff and T.E. Lister, INL/EXT-18-51694, Idaho National Laboratory, 2018.
- J.A. LaVerne and P.L. Huestis, J. Phys. Chem. C, 2019, 123, 21005.

[•] L. Lundberg, ERA-NRE-94-096, EG&G, 1994.

Conclusions

- Radiation promotes H₂ formation from AA1100 coupons.
- G(H₂) is dependent on gaseous environment, temperature, humidity, and presence of a corrosion layer.
- This work has generated a series of G(H₂) values to support predictive model development.

Future Research Questions

- 1. How does corrosion layer surface composition change with absorbed dose upon reaching steady-state?
- What effect does alloy composition have on H₂ production?

Impact Factor = 3.623, 2021

MURR (<u>AI-6061</u>): ~113 days in-reactor at \geq 60°C; <18 years wet storage at ~22°C; 5-10 µm thick corrosion layer of bayerite (P) and boehmite (S).

Mk-16b (<u>Al-6061</u> or <u>Al-6063</u>): ~220 days in-reactor at \ge 34 °C; ~40 years wet storage at ~22°C; 5-15 µm thick corrosion layer of bayerite (P), boehmite (S), and gibbsite (T).

Acknowledgements

Savannah River National Laboratory®

OPERATED BY SAVANNAH RIVER NUCLEAR SOLUTIONS

Summary of Project Deliverables (FY19-20)

- Milestone 2.6: Complete Round-Robin Hydrogen Gas Analysis Capability Comparison. Technical report, DOI: <u>https://doi.org/10.2172/1755761</u>.
- 2. Milestone 2.7: Evaluation of Techniques for the Measurement of Molecular Hydrogen Gas in Helium Matrices. Technical report.
- 3. Milestone 2.8: Preliminary Radiolytic Gas Generation Measurements from Helium-Backfilled Samples. Technical report, DOI: <u>https://doi.org/10.2172/1768757</u>.
- 4. Parker-Quaife *et al.*, *Rad. Phys. Chem.*, **2020**, *177*, 109117, DOI: <u>https://doi.org/10.1016/j.radphysch</u> <u>em.2020.109117</u>.

