INL/MIS-21-63965

8/24/2021

Alexander W. Abboud

Modeling and Simulation Results for Aluminum-clad SNF in DOE Sealed Standard Canisters

NWTRB Summer Board Meeting

Overview

- Improve prior engineering assumptions for DOE sealed standard canisters (DOE-REP-104¹)
 - Hydrogen content and total pressure (flammability and canister failure concerns)
 - Aluminum-clad spent nuclear fuel (ASNF)
 - Modeled fuel storage of advanced test reactor (ATR), Missouri University Research Reactor (MURR), High Flux Isotope Reactor (HFIR)
- Improve with 3D computational fluid dynamics (CFD) modeling
 - 720 CPUs on INL's Falcon supercomputer
 - Star-CCM+ CFD used for fully resolved temperature data
 - 50 year timeframe requires multiscale time-stepping
 - Coupled with Cantera chemistry package for gas phase chemistry and surface chemistry
- Work has been independently reviewed by Pacific Northwest National Laboratory
 - No modifications to methodology needed
 - Clarification made in reports

¹Wertsching, A.K., Hill, T.J., Mackay, N. and Birk, S.M., 2007. Material Interactions on Canister Integrity During Storage and Transport. Tech. rep. Idaho National Laboratory, DOE/SNF/REP-104.

DOE Sealed Standard Canister

- ATR fuel expected to be loaded in 18" Diameter canister, 15-foot height with 3 Type-1a buckets loaded with 10 ATR elements each
- Symmetry condition used in thermal model

Chemistry Model

- Gas phase utilizes Wittman & Hansen model 40 species 110+ equations coupled with surface chemistry
 - Goal to model H₂ and total pressure accurately
- Three solid chemistry equations
 - Using updated G-values (H₂ radiolysis generation) from previous Task 2 presentation for helium environment
 - 2.92 4.12 x 10⁻⁴ µmol H₂/J (RH% 50-0)
 - Fit mass loss data from Task 1 to thermal dehydration of pseudo-boehmite (water absorption in corrosion layer can vary)
 - Generates water vapor, can increase pressure and contribute to $\rm H_2$ generation
 - Use general corrosion rate of aluminum in water from Argonne National Laboratory (ANL) report (Hilton 2000)
 - Small H₂ generation
- Validation of chemistry model occurs over range of RH and Temperature compared to Task 1/2 results

Model Chemistry Overview

- The full reaction network is too complex for reasonable simulation time
- Fully resolve 50-year thermal field in CFD model
- Use 5-environment temperature distribution to resolve chemistry in Cantera accounting for spatial temperature differences

INL/ MIS-21-63965

Parameter Determination

- CFD & chemical model requires set of parameters for initial condition
- Fuel decay heat
 - Inventory list: Average decay heat 18 W, with 12 W std. dev, used 1 std. dev below and 2 above
 - Decay over time w/ Cs half-life, dose rate based on decay heat
- External temperature assumed similar to INL site history temps
 - Fluctuate with seasonal variations
- Water content
 - Residual water at 1-100% RH
- Oxide Film Thickness
 - 5 µm to 15 µm range based on MURR (Olsen et al., SRNL 2019 report) and RERTR tests (Kim et al. 2008)
 - Much lower than DOE-REP-104 assumption (34 µm)
- Additional sealed cases with 1% air contamination

ATR Sealed Canister Velocities/Temperatures

Use CFD temperature to initialize Cantera with 5 temperature zones, and use recirculation flow as mass exchange between zones

ATR DOE Standard Sealed Canister - Chemistry

- For a nominal DOE standard canister with ATR fuel (18 W decay heat, 10 μm thickness, dried 1.01:1 H₂O:Al₂O₃) in pure Helium
- Only H₂, H₂O and He significant species present (> ppm)
- 1.36 atm total pressure, 7% H₂ by year 50 of storage, no residual oxygen (<ppb) present

ATR DOE Standard Sealed Canister - Chemistry

- Condition changes with oxide thickness are very small
- Changes from high to low decay heat larger

Q: Decay heat Th: Oxide Thickness

IDAHO NATIONAL LABORATORY

ATR DOE Standard Sealed Canister – Chemistry + 1% air

- Changes in H₂ formation and total pressure with residual air small
- HNO₃ only other major species present
- Nominally 1500 ppm $\rm HNO_3$ after 50 years, max 3000 ppm with high decay heat
 - Minimal SS corrosion expected

ATR Residual Pseudo-Boehmite Case

- Considered insufficient drying 2.5:1 H₂O:Al₂O₃ (fully saturated) on surface corrosion layer
- Thermal dehydration + residual water present, increases to 2.3 atm total pressure (from 1.36)
- Initial water release increases pressure,
 - no other species (H_2O_2/OH) present in large quantities,
 - negligible increase in H_2 from fully dried scenario, negligible O_2

ATR Residual Pseudo-Boehmite Case

- Pressure variation higher, up to 2.5 atm max
- Hydrogen concentrations mostly unchanged, but slightly lower due to higher water vapor %
- Some dependence on oxide thickness due to water content
- High water content creates yearly fluctuations with more temperature dependence

12

13

ATR Residual Pseudo-Boehmite Case + 1% air

- Case with 1% residual air shows no significant changes in H₂ and total pressure from pure He case
- As with previous case, primarily HNO_3 as main additional component, nominal HNO_3 of 1000 ppm
 - Max of HNO₃ 2000 ppm with high decay heat

Other ASNF

- MURR Fuel is also a significant quantity of DOE manage fuel
- Expected to be packed in Type-1a baskets in 10-foot-tall canisters
- Similar surface area to volume ratio as packaged ATR
 - Sensitivity to decay heat: 25/13.4/5 W (based on SRNL report¹)

Configuration	Total Surf Area	Free Volume	Ratio
ATR 15 foot 18" D	120 m ²	450 L	0.267
MURR 10 foot 18" D	78.8 m ²	284 L	0.277

¹Sindelar, R.L., Leeper, P.A., Dunsmil, M.D., 2012, "Reference Fuel Assembly for Dry Storage Demonstration of L-Basin Spent Fuel", Tech. Rep. Savannah River National Laboratory, SRNL-TR-2012-00098.

MURR Fuel - Thermal

MURR Fuel - Chemistry

- Pressure and hydrogen in the MURR DOE sealed canister lower than ATR fuel for base case
 - As with ATR storage, no appreciable O_2
 - 1.34 atm and 6% H_2 for nominal case

MURR Fuel - Chemistry

- Variation of decay heat shows values lower than ATR fuel
 - Max pressure: 1.41 atm
 - Max H₂: 10.8%
 - With residual Air: Max HNO₃ 2300 ppm

Th: Oxide Thickness

17

HFIR Fuel

- The HFIR fuel specifications are expected to split the inner and outer annulus into two separate storage canisters with Type-6a/6b baskets
 - HFIR-Outer in 24" Diameter
 - HFIR-inner in 18" Diameter

Configuration	Total Surface Area	Free Volume	Ratio
ATR 15 foot 18" D (reference)	120 m ²	450 L	0.267
HFIR-inner 10 foot 18" D	56.9 m ²	296 L	0.192
HFIR outer 10 foot 24" D	108.4 m ²	548 L	0.198

INL/ MIS-21-63965

HFIR Fuel - Thermal

- Geometry of HFIR annulus results in central uniform central temperature
- Less horizontal packing density = 10-20 C colder than ATR layout

IDAHO NATIONAL LABORATORY

19

HFIR Fuel - Chemistry

- Maximums for both inner/outer HFIR storage packages very similar
 - 12% mole H₂, 1.4 atm (dried), 2.17 atm (undried), 3500 HNO₃ (with residual air)
 - With larger surface area of HFIR, surface oxide thickness sensitivity remains small

Th: Oxide Thickness

Packaging Scenario Summary

- ATR worst case bounds others
- Nominal cases of HFIR slightly higher P and H₂
 - Assumptions from tabulation of post-reactor removal vs. current inventory
- Lower temperatures + more air in HFIR allow for more nitric acid formation

Conclusions

- Most scenarios exhibit significant H₂ above lower flammability limit, no case shows this in combination any appreciable amount of O₂
 - Low decay-heat cases show H_2 lower than flammability limit (<4%)
 - ATR (6W), MURR (5W), HFIR-I (21W), HFIR-O (39W)
- If 1% residual air is present, possible for 500-3000 ppm HNO₃
 - Likely minimal corrosion (0.01-0.034 mpy) based on lit. survey
- Worst-case ATR fuel bounds MURR/HFIR models for H₂ and pressure
 - Maximum canister pressure 34 atm (500 psi)
 - Nominal scenario: 1.36 atm total pressure, 7% mole frac H₂
 - High decay heat: 1.51 atm total pressure, 16% mole frac H₂
 - High decay heat + undried: 2.6 atm total pressure, 15% mole frac H_2
- Changes with oxide thickness small across fuels modeled
 - Characterization on individual fuel basis likely unneeded

Future Goals

- In 1-year timeframe
- Update results if Al6061 alloy shows significant changes from Al1100
- Extended modeling timeframe beyond 50 years
- Adjust model as needed based on long-term radiolysis testing
 - Dried oxide samples show lower G-values than those used here
 - H₂ from SRNL "large plate" tests show a leveling off in production
- Validation with instrumented lid test on longer timeframe

Published reports

- INL/EXT-18-51683 Transient Coupled Chemical-Thermal-Fluid Field Simulation for Sealed Aluminum-clad Spent Nuclear Fuel Storage Canister
- INL/EXT-18-51681 Development of Transient Coupled Chemical-Thermal-Fluid Multiphysics Simulation for Unsealed, Vented Aluminum-clad Spent Nuclear Fuel Storage Canister
- INL/EXT-19-52650 Sensitivity Study of Coupled Chemical-CFD Simulations for Sealed and Unsealed Aluminum-clad Spent Nuclear Fuel Storage Canisters
- INL/EXT-19-55185 Full-scale Model of Dry Storage of Aluminum Clad Spent Nuclear Fuel
- INL EXT-20-57893 Modeling of SRS Aluminum-clad Spent Nuclear Fuel in Standard DOE Sealed Canisters
- INL EXT-20-59994 Chemical Modeling of ATR Fuel in DOE Standard Canisters with Borated Stainless Steel Corrosion
- INL EXT-21-62306 Modeling of ATR fuel in DOE Standard Canisters with Helium Backfilled Condition
- Sensitivity Study of Coupled Chemical-CFD Simulations for Analyzing Aluminum-clad Spent Nuclear Fuel Storage in Sealed Canisters submitted to Nuclear Engineering and Design

Acknowledgments

 This work was funded by the U.S. Department of Energy Environmental Management office. This work was performed by Battelle Energy Alliance, LLC, under DOE Idaho Operations Contract DE-AC07-05ID14517 and made use of the resources of the High Performance Computing Center at Idaho National Laboratory which is supported by the Office of Nuclear Energy of the U.S. DOE and the Nuclear Science User Facilities.

INL/ MIS-21-63965

Questions?

Physical parameters

Material	Density [kg/m3]	Thermal Conductivity [W/m K]	Heat Capacity [J/kg K]	Emissivity [-]
Al-6061 (siding/back plates)[i]	2702	167	896	0.82
Stainless Steel 304 (buckets)[ii]	7900	14.9	477	0.7
Stainless Steel 316 (canister)[ii]	8238	13.4	468	0.7
Carbon Steel (impact plates)[ii]	7854	60.5	434	0.89
ATR Fuel Plates[iii]	3680	42.6	614.0	0.82 (assumed)

1. S.T. Polkinghorne and J.M. Lacy, "Thermophysical and Mechanical Properties of ATR Core Materials," Report No. PG-T-91-031, EG&G Idaho Inc (1991).

iii. F.P. Incropera, D.P. DeWitt, T.L. Bergman, and A.S. Lavine, Fundamentals of Heat and Mass Transfer, Sixth Edition, John Wiley and Sons, Hoboken, NJ (2007).

iiii. D.B. Illum, "ATR Fuel Summary Report," Tech. Report INEL-96/300 (1996).

IDAHO NATIONAL LABORATORY

27

Dried ATR Fuel

	Sealed			Sealed + 1% air			
Case / Variable Max	Pressure (atm)	H ₂ (%)	O ₂ (%)	Pressure (atm)	H ₂ (%)	O ₂ (%)	HNO ₃ (ppm)
Base (18W, 10um thickness, 1% H2O(g))	1.36	7.3	3e-8	1.36	7.4	0.21	1562
Low decay heat (6W)	1.29	2.5	1,6e-8	1.29	2.2	0.21	565
High decay heat (42W)	1.51	16.2	7e-8	1.50	16.7	0.21	3070
Low Thickness (5 µm)	1.35	7.3	3e-8	1.34	7.3	0.21	1581
High Thickness (15 µm)	1.37	7.4	3e-8	1.37	7.4	0.21	1545

Residual Pseudo-Boehmite Case

	Sealed			Sealed + 1% air			
Case / Variable Max	Pressure (atm)	H ₂ (%)	O ₂ (%)	Pressure (atm)	H ₂ (%)	O ₂ (%)	HNO ₃ (ppm)
Base (18W, 1% H2O(g))	2.29	6.7	2e-7	2.29	6.7	0.21	1028
Low decay heat (6W)	2.21	2.3	1e-7	2.21	2.1	0.21	394
High decay heat (42W)	2.56	14.5	бе-7	2.56	14.8	0.21	1957
Low H2O% (.1%)	2.29	6.6	2e-7	2.30	6.7	0.21	1025
High H2O% (10%)	2.25	6.8	2e-7	2.25	6.9	0.21	1057
Low Thickness (5 µm)	2.0	7.2	5e-8	2.0	7.2	0.21	1108
High Thickness (15 µm)	2.52	6.3	5e-7	2.52	6.3	0.21	963

Dried MURR Fuel

	Sealed			Sealed + 1% air			
Case / Variable Max	Pressure (atm)	H ₂ (%)	O ₂ (%)	Pressure (atm)	H ₂ (%)	O ₂ (%)	HNO ₃ (ppm)
Base (18W, 10um thickness, 1% H2O(g))	1.34	6.0	4e-8	1.34	6.0	0.21	1363
Low decay heat (6W)	1.29	2.3	2e-8	1.29	2.1	0.21	541
High decay heat (42W)	1.41	10.8	бе-8	1.41	11.0	0.21	2325
Low Thickness (5 µm)	1.33	6.0	4e-8	1.33	6.0	0.21	1379
High Thickness (15 μm)	1.35	6.1	4e-8	1.35	6.0	0.21	1349

Residual Pseudo-Boehmite Case

	Sealed			Sealed + 1% air			
Case / Variable Max	Pressure (atm)	H ₂ (%)	O ₂ (%)	Pressure (atm)	H ₂ (%)	O ₂ (%)	HNO ₃ (ppm)
Base (18W, 1% H2O(g))	2.24	5.5	2e-7	2.24	5.5	0.21	911
Low decay heat (6W)	2.16	2.2	1e-7	2.16	2.0	0.21	389
High decay heat (42W)	2.38	9.9	4e-7	2.38	10.0	0.21	1537
Low H2O% (.1%)	2.25	5.5	2e-7	2.25	5.5	0.21	908
High H2O% (10%)	2.20	5.6	2e-7	2.19	5.6	0.21	939
Low Thickness (5 µm)	1.96	5.9	5e-8	1.96	5.9	0.21	977
High Thickness (15 µm)	2.49	5.2	5e-7	2.48	5.2	0.21	858

Dried HFIR-Outer Fuel

	Sealed			Sealed + 1% air			
Case / Variable Max	Pressure (atm)	H ₂ (%)	O ₂ (%)	Pressure (atm)	H ₂ (%)	O ₂ (%)	HNO ₃ (ppm)
Base (18W, 10um thickness, 1% H2O(g))	1.39	9.9	бе-8	1.39	10.3	0.21	2961
Low decay heat (6W)	1.30	3.7	4e-8	1.03	3.6	0.21	1184
High decay heat (42W)	1.43	12.1	8e-8	1.43	12.7	0.21	3536
Low Thickness (5 µm)	1.38	9.8	7e-8	1.38	10.2	0.21	2993
High Thickness (15 µm)	1.40	10.0	бе-8	1.40	10.3	0.21	2932

Residual Pseudo-Boehmite Case

	Sealed			Sealed + 1% air			
Case / Variable Max	Pressure (atm)	H ₂ (%)	O ₂ (%)	Pressure (atm)	H ₂ (%)	O ₂ (%)	HNO ₃ (ppm)
Base (18W, 1% H2O(g))	2.13	9.6	3e-7	2.14	9.9	0.21	2081
Low decay heat (6W)	2.03	3.5	2e-7	2.03	3.5	0.21	856
High decay heat (42W)	2.17	11.9	3e-7	2.17	12.2	0.21	2490
Low H2O% (.1%)	2.14	9.6	3e-7	2.14	9.8	0.21	2074
High H2O% (10%)	2.09	9.8	3e-7	2.42	10.5	0.21	3798
Low Thickness (5 µm)	1.87	10.3	8e-8	1.87	10.6	0.21	2228
High Thickness (15 µm)	2.32	9.1	7e-7	2.32	9.3	0.21	1970

Dried HFIR-inner Fuel

	Sealed			Sealed + 1% air			
Case / Variable Max	Pressure (atm)	H ₂ (%)	O ₂ (%)	Pressure (atm)	H ₂ (%)	O ₂ (%)	HNO ₃ (ppm)
Base (18W, 10um thickness, 1% H2O(g))	1.39	9.6	бе-8	1.38	10.0	0.21	2989
Low decay heat (6W)	1.30	3.6	4e-8	1.29	3.5	0.21	1194
High decay heat (42W)	1.42	11.8	7e-8	1.42	12.4	0.21	3576
Low Thickness (5 µm)	1.37	9.5	бе-8	1.37	9.9	0.21	3019
High Thickness (15 μm)	1.39	9.7	бе-8	1.39	10.0	0.21	2960

Residual Pseudo-Boehmite Case

	Sealed			Sealed + 1% air			
Case / Variable Max	Pressure (atm)	H ₂ (%)	O ₂ (%)	Pressure (atm)	H ₂ (%)	O ₂ (%)	HNO ₃ (ppm)
Base (18W, 1% H2O(g))	2.10	9.4	2e-7	2.1	9.7	0.21	2119
Low decay heat (6W)	2.01	3.5	2e-7	2.01	3.4	0.21	869
High decay heat (42W)	2.14	11.7	2e-7	2.14	12.0	0.21	2539
Low H2O% (.1%)	2.11	9.4	2e-7	2.11	9.7	0.21	2112
High H2O% (10%)	2.05	9.7	3e-7	2.16	13.7	0.21	3494
Low Thickness (5 µm)	1.85	10.1	7e-8	1.85	10.4	0.21	2266
High Thickness (15 µm)	2.28	8.9	5e-7	2.28	9.2	0.21	2009