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Disclaimer 

This is a technical presentation that does not take into account contractual 
limitations or obligations under the Standard Contract for Disposal of Spent 
Nuclear Fuel and/or High-Level Radioactive Waste (Standard Contract) (10 
CFR Part 961). For example, under the provisions of the Standard Contract, 
spent nuclear fuel in multi-assembly canisters is not an acceptable waste form, 
absent a mutually agreed to contract amendment. 

To the extent discussions or recommendations in this presentation conflict with 
the provisions of the Standard Contract, the Standard Contract governs the 
obligations of the parties, and this presentation in no manner supersedes, 
overrides, or amends the Standard Contract. 

This presentation reflects technical work which could support future decision 
making by DOE. No inferences should be drawn from this presentation 
regarding future actions by DOE, which are limited both by the terms of the 
Standard Contract and Congressional appropriations for the Department to 
fulfill its obligations under the Nuclear Waste Policy Act including licensing and 
construction of a spent nuclear fuel repository. 
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Key Attributes for DPC Fillers 

 Material Compatibility 

 Ease of Injectability 

 Moderator Displacement 

 Minimal Intrinsic Neutron Moderation 

 Minimal Gas Generation 

 Long-Term Chemical Stability 

 Radionuclide Sequestration 

Phosphate-Based Cements 

Low Melting Point Metals 
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    Phosphate Cements as DPC Fillers 

Advantages of Phosphate Cements: 

 Inorganic 

 Nontoxic 

 Near Neutral pH 

 Very Low Solubility (at near neutral 
pH) 

 Self-Bonding 

 Radionuclide Sequestration 
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   Phosphate Cements Under Evaluation 

 Aluminum Oxide / Aluminum Phosphate (Al2O3 / AlPO4) 
Cements (APCs) 

 Calcium Phosphate (Ca5(PO )3(OH)) Cements (CPCs) 

 Wollastonite / Aluminum Phosphate (CaSiO3 / AlPO4) 
Cements (WAPCs) 

 Fly Ash / Aluminum Phosphate Cements 

 Other Commercially Available Cements (as Applicable) 
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    Aluminum Phosphate Cements (APCs) 

Early Attempts… Al2O3
* + 2H3PO4  2AlPO4 + 3H2O 

 Based on Wagh et al., 2003 using 
Inexpensive Starting Materials (Al2O3 and 
H3PO4). 

 Reactants form Smooth Pourable Slurries 
in Water that are Stable for Days. 

 Acid-Base Reaction Results in Near 
Neutral pH Post Set. 

 Set Temperatures Typically at 150-200 oC 
at both Ambient (0.1 megapascal MPa) 
and Elevated Pressure (up to 1 (MPa)). 

* Al2O3 is present in excess with respect to H3PO4 at ~5:1 

0.1 MPa Pressure 150 °C 

~0.2 MPa Pressure 150 °C 
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APC Experimental Approach 

Vary Pressure, Temperature and Time 

Effects of Additives I: 
Boric acid (H3BO3) and gadolinium oxide 
(Gd2O3) as neutron absorbers. 

Effects of Additives II: 
Catapal B (AlOOH), gibbsite (Al(OH)3), and 
metakaolin as aluminum sources. 
Ammonium dihydrogen phosphate 
(NH4H2PO4), sodium pentahydrogen 
phosphate, (NaH5(PO4)2) and ammonium 
pentahydrogen phosphate NH4H5(PO4)2 as 
phosphate sources. 
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APCs at Elevated Pressures (~1 MPa) 

 Reaction between Al2O3 and aqueous 
H3PO4 at 150 – 200 oC at ~1 MPa for 0.5 to 
2 days yields well consolidated monoliths. 

 Reactants ‘set’ to produce one or more 
binder phases: berlinite (α-AlPO4), 
AlPO4H2O and AlPO4 – cristobalite. 

 Subsequent curing at 250 oC for 8 hours 
yields berlinite (α-AlPO4), and/or AlPO4 – 
cristobalite. 

 It is unclear which AlPO4 phase is more 
effective as a binder. 

 Adequate unconfined compressive strength 
measured at 5.5 MPa. 

APC sample in Pyrex tube (1.25 
in x 5 in) after setting and curing. 
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APCs at Ambient Pressure (0.1 MPa) 
 The reaction Al2O3 + 2H3PO4  2AlPO4 + 3H2O takes 

place at ≥ 130 oC. Product water as steam causes large 
voids as APCs set at ambient pressure. 

 Additional aluminum sources such as gibbsite (Al(OH)3) 
and metakaolin reduce or eliminate expansion and large 
void formation during setting of the cement. 

 These sources react with acid phosphates at room 
temperature, causing APCs to begin setting below 100 oC. 

 NH4H2PO4, NaH5(PO4)2, and NH4H5(PO4)2 were also 
tested as alternative phosphate sources. 

 APC with metakaolin and NaH5(PO4)2 additives yielded a 
unconfined compressive strength of 9.5 MPa. 

 Binder phase(s) for the ambient pressure APCs is 
unidentified in almost all cases and likely amorphous. APC with metakaolin and NaH5(PO4)2 

at Ambient Pressure 

Standard APC at 
Ambient Pressure 
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Wollastonite Aluminum Phosphate 
Cements (WAPCs) 

 In the presence of a wollastonite (CaSiO3) filler, 
Al(OH)3 reacts with aqueous NaH5(PO4)2 to 
make well consolidated monoliths. 

 Mixtures are set by slowly ramping temperature 
to 130 oC, then are cured at 250 oC. 

 Unconfined compressive strength for WAPC 
material pictured (11.5 MPa) was greater than 
all APCs tested. 

 Binder phase(s) cannot be identified by XRD 
and could be amorphous and/or possibly a 
glass. WAPC Monolith 
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   Calcium Phosphate Cements (CPCs) 

Ca (PO ) O + CaHPO4  Ca (PO ) (OH) 

 Tetracalcium Phosphate (TTCP) and Dibasic 
Calcium Phosphate (DCPA) react aqueously at 
room temperature to form CPC (hydroxyapatite). 

 Set time is rapid ≤ 25 minutes. Calcium chelators 
(carboxylic acid-based) were explored to increase 
set times to 2-3 hours. 

 Dodecanedioic Acid (DDDA) a Dicarboxylic Acid 
was determined to be most effective but required 
the use of 1 M K3PO4 solution (in H2O) for complete 
dissolution. 

 Produces CPC monoliths composed of 
hydroxyapatite with some residual starting product 
(TTCP) that negatively affects strength and integrity. 

CPC Monolith 
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   Summary and Next Steps 

 Currently APCs and WAPCs show the greatest promise for continued 
development. 

 Continue process and formulation optimization of both cements. 

 Development of CPCs that set at elevated temperatures (100-200 oC) is 
underway. 

 Measurements of filler porosity as well as their permeability to water and gas are 
also underway. 

 Future work includes: 

• Radiation stability and long term solubility testing on optimized products. 

• Develop in-package chemistry models with fillers. 

• Small scale testing of fillers in DPC mock ups. 
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Questions? 


