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This is a technical presentation that does not take into account contractual 
limitations or obligations under the Standard Contract for Disposal of Spent 
Nuclear Fuel and/or High-Level Radioactive Waste (Standard Contract) (10 
CFR Part 961). For example, under the provisions of the Standard Contract, 
spent nuclear fuel in multi-assembly canisters is not an acceptable waste form, 
absent a mutually agreed to contract amendment. 
To the extent discussions or recommendations in this presentation conflict with 
the provisions of the Standard Contract, the Standard Contract governs the 
obligations of the parties, and this presentation in no manner supersedes, 
overrides, or amends the Standard Contract.
This presentation reflects technical work which could support future decision 
making by DOE.  No inferences should be drawn from this presentation 
regarding future actions by DOE, which are limited both by the terms of the 
Standard Contract and Congressional appropriations for the Department to 
fulfill its obligations under the Nuclear Waste Policy Act including licensing and 
construction of a spent nuclear fuel repository. 

Disclaimer
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Legal Notice

This report was prepared as an account of work sponsored by an agency of the 
United States Government. Neither the United States Government, nor any 
agency thereof, nor any of their employees, nor any of their contractors, 
subcontractors, or their employees, make any warranty, express or implied, or 
assume any legal liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process disclosed, or 
represent that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute or imply 
its endorsement, recommendation, or favoring by the United States Government, 
any agency thereof, or any of their contractors or subcontractors. The views and 
opinions expressed herein do not necessarily state or reflect those of the United 
States Government, any agency thereof, or any of their contractors. 
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Results discussed below are based on work by:
 Halim Alsaed – Termination of criticality
 Amanda Barela – Inventory
 Pat Brady – In-package chemistry and radionuclide 

solubilities
 Mike Gross and Fred Gelbard – Thermal analyses
 Scott Painter (ORNL) and Michael Nole – PFLOTRAN 

calculations
 Jeralyn Prouty – Reference repository diagrams
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 Develop tools to model the consequences of postclosure criticality
• Couple neutronics calculations and thermal-hydraulic calculations 
• Build sub-module in PFLOTRAN to account for postclosure critical event

 Further our understanding of the features, events, and processes 
important to modeling postclosure criticality

 Examine processes leading to permanent termination of critical 
event

 Identify areas where further work is needed

Objectives
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 Two hypothetical repositories considered
• Saturated repository in shale (Mariner et al. 2017)

• 500 m depth
• Backfilled with bentonite
• Hydrostatic pressure is 50 bars

• Unsaturated repository in alluvium (Mariner et al. 2018)
• 250 m depth
• Backfilled with crushed alluvium
• Percolation rate up to 10 mm/yr

 Calculate radionuclide concentrations in the host rock with and 
without the occurrence of a critical event
• Steady-state criticality (9,000 – 19,000 years postclosure)
• Transient criticality (9,000 years postclosure)

 Single waste package (37 PWR)

Approach
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 A waste package is breached; criticality occurs 9,000 years after 
closure*

 Fuel assembly lattice remains intact (i.e., intact grid spacers) and 
cladding permits radionuclide release (e.g., through pin holes and 
cracks)* 

 Al-based neutron absorbers are not present 
 The steady-state critical event is not cyclic*

* Will be investigated as the research effort moves forward 

Assumptions
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Hypothetical Repository in Alluvium

Mariner et al. 2018
Mariner et al. 2018
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Single DPC Model Setup

• Geometry 
- Consistent with GDSA Unsaturated Alluvium reference case 

(Sevougian 2019; Hardin and Kalinina 2016) 
- 40 m drift spacing, 40 m center-to-center spacing within drift 
- Square cross-section for drift (4m x 4m) and DPC (1.67 m x 5 m x 

1.67 m)
- 0.1 m overpack/shell

• Properties 
- Permeability 10-14 (alluvium) 10-13 (backfill) 
- Thermal conductivity  = 1 W/m2-K (dry) and 2 W/m2-K (wet) 
- Canister internals = hydraulic properties of backfill 

• Scenario 
- Postclosure with 37-PWR assembly and backfilled drifts in place
- Top of DPC shell breached at 9000 years allowing water to enter 
- Initiate criticality event when canister is filled with water 

• Cases 
- 10 mm/year and 2 mm/year percolation into waste package 
- Range of power outputs for criticality event 

Objective is to estimate (bound) power output that could be sustained before 
driving water out of the package 
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PFLOTRAN

• Open source code for thermal hydrology and reactive transport in 
variably saturated porous geologic media 

• Highly parallel by domain decomposition 

• “General mode” solves coupled conservation equations over two 
phases 
- Water as liquid and vapor 
- Air as gas and dissolved in liquid 
- Energy (advection and conduction) 
- Variable switching to accommodate phase disappearance/reappearance 

• Lichtner, Hammond et al. www.pflotran.org
Hammond, Lichtner and Mills 2014 Water Resources Research

http://www.pflotran.org/
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Temperature at DPC center prior to breach 

2 mm/year

10 mm/year

The 2 mm/year case has 
slightly higher temperatures 
because of less latent heat of 
vaporization to overcome and 
slightly lower thermal 
conductivity

Temperature at DPC Center Prior to Critical Event
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10 mm/year
500 years postclosure

2 mm/year
750 years postclosure

Liquid saturation index40 m x 80 m 
Vertical cross section 

Note that 
dryout does 
not extend to 
the pillar 
centerline 
between drifts

Liquid Saturation Index at Time of Maximum Dryout



energy.gov/ne13

Liquid Saturation Index for 10 mm/yr Case, 400 
W Criticality Event
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Liquid Saturation Index for 2 mm/yr Case, 100 W 
Criticality Event

• 100 W event could desaturate the package in about 100 years
• Evaporation without boiling is sufficient to keep the waste package 

dry in low infiltration unsaturated alluvium

15,000 years 17,000 years 18,000 years
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Post-breach Waste Package Temperatures

2 mm/year10 mm/year

100 W
400 W

300 W
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Conclusions for Unsaturated Case

• DPC center temperature peaks around 20 years after closure 
- ~235ºC for 2 mm/year case 
- ~225ºC for 10 mm/year case

• Dryout zones around individual DPCs do not coalesce, allowing for 
vertical drainage 

• Criticality is possible after water returns to the emplacement drifts 
- ~9,100 years postclosure for 10 mm/year case 
- ~17,000 years postclosure for 2 mm/year case

• Long-term average power output from criticality event is limited by 
thermal hydrology of the unsaturated alluvium 
- <400 W per DPC for 10 mm/year case
- <100 W per DPC for 2 mm/year case
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Hypothetical Argillite Repository

Mariner et al. 2017
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Coupling Scheme Between Processes
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• For saturated 
repository, maximum 
power produced by 
steady-state critical 
event is assumed to 
be 4 kW based on 
scoping calculation

• Boiling point is 264 
oC

• Heat transfer is via 
conduction

Thermal Analyses – Power Generation
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Temperature vs. Time
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Inventory Changes
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Factors Affecting In-Package Chemistry During 
Steady-State Critical Event

• Chemistry inside waste package affected by
- New fission products
- Increased temperature
- Increased radiolysis
- Stainless steel corrosion
- Spent fuel degradation

• Increased temperature accelerates corrosion rates of DPC materials
• Steel corrosion leads to reducing conditions (saturated shale 

repository) BUT
• Radiolysis produces oxidants (H2O2, NO2 in unsaturated case) 
• Coupled calculation of radiolysis, steel degradation, spent fuel 

degradation needed
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Radionuclide Solubilities

• Degradation of SNF produces relatively insoluble actinide oxides 
containing Pu, U, Am, Np, and Th

• Solubilities of these oxides control actinide release and tend to 
decrease as temperature increases

• pH affects radionuclide solubilities; in general, actinide solubilities are 
higher away from neutral pH

• For fission products that are not solubility limited (e.g., I), releases into 
the host rock depend on SNF degradation rates and uptake by backfill

• As temperature increases, there is a decrease in solubilities of oxides 
and carbonates of neutron poisons (149Sm, 157Gd, 143Nd)
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Engineered Barrier System Degradation

• In the hypothetical repositories assumed in this work, engineered 
barriers consist of
- Waste package outer barrier 
- DPC
- Fuel cladding
- Backfill (bentonite)

• Waste package is assumed to have failed for critical event to occur –
no longer serving as an engineered barrier but is still right circular 
cylinder

• Cladding is assumed to maintain configuration but have small holes

• Bentonite backfill is assumed to not act as a barrier to radionuclide 
transport during critical event
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Termination of Criticality

• Radioactive decay provides limited changes in reactivity after ~100,000 years. 

• Buildup of 233U from decay of 237Np results in a relatively small reactivity 
increase over a few million years

• Depletion and production of fissile material from additional burnup from 
steady-state postclosure criticality occurs very slowly
- For saturated repository, 4kW for 10,000 years results in additional ~1 GWd/MTU average 

burnup

• Grid spacer corrosion/collapse resulting in uniform pin pitch reduction of ~3 
mm could result in permanent termination of criticality for most DPCs

• Dissolution and transport of neutron-absorbing isotopes could increase 
reactivity

• Dissolution and transport of 239Pu (t1/2 = 24,100 years) prior to about 100,000 
years could reduce reactivity

• Dissolution and transport of uranium would likely have a small effect on 
reactivity because of the large mass of uranium in a DPC
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Performance Assessment Calculations

• Developed a criticality sub-module in PFLOTRAN
- Added capability to specify a steady-state heat from a critical event for a 

specified period of time
- Added capability to change radionuclide inventory at a specified time

• Considered case without steady-state critical event and case with 
steady-state critical event

• Present results for saturated shale case only; unsaturated alluvial 
case was too dry for chemistry model to run
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Performance Assessment Model Setup

Model domain for a 3D, single-drift, single-waste package 
simulation using quarter symmetry boundaries.
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PFLOTRAN Model Results in Shale Next to Drift
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Conclusions (1/2)

• Developed new criticality sub-module for PFLOTRAN that accounts 
for additional heat and additional radionuclides generated by 
postclosure critical event

• The power generated by a postclosure steady-state critical event in a 
saturated repository has the potential to be much higher than that in 
an unsaturated repository  

• Qualitative insights into in-package chemistry and radionuclide 
solubility
- Acids produced by additional radiolysis can be buffered by stainless steel 

corrosion products
- Coupled calculation of radiolysis, steel degradation, spent fuel degradation 

needed
- Both actinides and neutron-absorbing radionuclides are less soluble at 

higher temperatures, but also affected by pH
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Conclusions (2/2)

• Behavior of EBS in saturated repository with postclosure critical event 
not well understood, needs further study

• Insights into permanent criticality termination
- Fuel can remain reactive for entire postclosure period
- Identified termination mechanisms for future study

• Insights into repository performance
- Importance of newly generated radionuclides to dose is dependent on 

radionuclide travel time from repository to dose receptor
- Concentration of 129I in the near field increases about 3% in the long term
- Concentration of 237Np in the near field increases about 50% in the long 

term
- Concentrations of 240Pu, 229Th, and 233U in the near field increase about an 

order of magnitude in the long term
- 241Am, 90Sr, 137Cs, and 238Pu appear only in the case with criticality because 

they had decayed to nothing in the case without criticality. 
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Questions?
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Backup Slides



energy.gov/ne34SFWST

Plan View of Model for Thermal Analyses
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Waste Package Temperature

Temperature History for 4 kW Criticality from 9,000 to 
19,000 Years with Thermal Properties for Shale Host Rock.
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Temperature Change – Adjacent Waste Packages

Temperature Change in Adjacent DPCs Separated by 20, 30, and 
40 meters from the Central (Critical) DPC in Shale Host Rock



energy.gov/ne37

Effects of Convection – 10,000 Years

k = 1 x 10-15 m2 k = 5 x 10-15 m2

Contours of Increased Temperature Above Ambient 
at 10,000 Years. Solid Lines are Conduction Only, 
and Dashed Lines are Conduction and Convection
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Inventory Changes – Actinides and Their 
Decay Products
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Inventory Changes – Fission and Activation 
Products
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Inventory Changes – Stable Fission Products
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Chemistry Inside the Waste Package During 
Steady-State Critical Event

• Arrhenius equation predicts corrosion rates of SS
- 0.00008 μm/day at 100°C (alluvial repository)
- 0.002 μm/day at 169°C (shale repository)

• In hypothetical unsaturated alluvium environment, lower SS corrosion 
rate is not likely to produce enough trevorite to buffer acid produced 
by radiolysis (assuming “bathtub”)

• In hypothetical saturated shale environment, higher SS corrosion rate 
is likely to produce enough trevorite to buffer acid produced by 
radiolysis and inhibit oxidative degradation of SNF (assuming 
“bathtub”)
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Termination of Criticality - Approach

• What, how, and when could SNF or DPC characteristics be affected 
by disposal events and processes such that the potential for criticality 
initiation or continuation becomes permanently significantly 
diminished?

• To begin to answer this question, examined eight typical criticality 
control parameters

• Determined four parameters were worthy of further examination
- Radioactive decay
- Burnup
- Irreversible geometry changes
- Compositional changes due to corrosion or dissolution
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Reactivity Perturbations Due to Burnup

Concentration of Fissile Isotopes as a Function of PWR SNF Burnup

Pu-239 
becomes the 
primary fissile 
isotope; it 
reaches an 
equilibrium 
concentration at 
~30 GWd/MTU
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Reactivity Perturbations Due to Burnup (cont’d)

Concentration of Neutron Absorber Isotopes as a Function of PWR SNF Burnup

Fission 
product 
neutron 
absorber 
concentration
continues to 
increase
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