

Spent Fuel and Waste Science and Technology (SFWST)

Dry Storage of Commercial SNF Thermal Analysis

David Richmond

PNNL-SA-149171

NWTRB Fall 2019 Board Meeting Alexandria, VA November 19, 2019

Outline

- Historical Context
- Thermal Modeling Phenomena Identification and Ranking Table (PIRT)
- Current Work
 - High Burnup Demonstration Research Project Cask (HBU Demo)
 - Boiling Water Reactor (BWR) Dry Cask Simulator (DCS)
 - MAGNASTOR Heat Load Sensitivity
- Future
 - Transient Modeling
 - Horizontal Dry Cask Simulator

Historically, thermal design was not fully integrated

- Fuel temperature limits were not tightly controlled
- Large amounts of margin to thermal limits at normal operating conditions
- Operations are primarily concerned with offloading large numbers of old fuel assemblies
- It is useful and expedient to bias high temperatures

Thermal design is now fully integrated

- Operations require loading higher decay heats
- As loaded (non design basis) conditions are analyzed routinely
- Aging management is critical
- Best estimate calculations are needed for integrated decision making

Phenomena Identification and Ranking Table Schedule

- PIRT Deliberation Meeting
 - October 22-24
 - Sam Durbin (SNL)
 - Chris Bajwa (NRC)
 - Jim Fort (PNNL)
 - Victor Figueroa (SNL)
- Initial Report Draft
 - January 2020
- Finalize and publish PIRT Report
 - Summer 2020

Scenarios

• Storage Bolted

- TN-40

- Storage Vertical Ventilated
 - MAGNASTOR
 - HI-STORM
- Storage Horizontal Ventilated
 NUHOMS
- Short Term Operations
- Transportation

Phenomena/Models/Parameters

Geometry

- General sizing and tolerances
- Gap thickness

Boundary Conds

- Ambient air temp
- Wind vector
- Ground temperature and ground/pad thermal resistance
- Atmospheric pressure
- Insolation
- Pool/cooling jacket temperature
- Fluid pressurization (vacuum for short term operations)

- Material Prop. and Source Term
 - Solid properties (including temperature dependence)
 - Fluid properties (equations of state)
 - Surface radiative properties
 - Decay heat

- Physics Eqns
 - External (ventilation air) convection
 - Flow, turbulence, heat transfer
 - Boundary correlation
 - Internal thermal-fluid modeling
 - Explicit (pin-by-pin CFD)
 - Subchannel code
 - K-effective (porous media)
 - Thermal radiation
 - Gap heat transfer model
 - Contact conductance

- Numerical Soln
 - Space discretization (mesh)
 - Time discretization

- Other
 - Materials degradation
 - Phase change
 - Cask interactions
 - Individual modeler variability

Phenomena Identification and Ranking Table Process

- Knowledge (Low Medium High):
 - Is the state of the art acceptable/ready to be used for best estimate plus uncertainty?
- Importance/Sensitivity (Low Medium High):
 - Is the figure of merit (temperature) sensitive to this?
- Opportunity (Yes No):
 - Do we recommend prioritizing a reduction in uncertainty?

Thermal analysis can support many evaluations

• Total Clad Metrics

=

- Percent Surface Area
- Average Clad Temperatures
- Fuel Performance Calculations
 - Axial Temperature Profile
 - Load Specific
- Canister Temperature Maps
 - Temperature at residual stress zones

The HBU Demo Cask provides unique operational data

- Steady state modeling is complete
- Initial transient modeling is complete
 - Loading
 - Drying
 - Pad

High accuracy inputs are critical to high accuracy predictions (FSAR gap vs. 0.1 inch)

1

6

12

18

24

29

5

11

17

23

7

13

19

25

30

160 -40 ···· COBRA-SFS Assembly 2 120 ···• COBRA-SFS Assembly 6 ···· COBRA-SFS Assembly 14 ···· COBRA-SFS Assembly 19 100 ···· COBRA-SFS Assembly 24 evation (in.) ···· COBRA-SFS Assembly 28 ···· COBRA-SFS Assembly 31 80 ш ···· STAR-CCM+ Assembly 2 •••••• STAR-CCM+ Assembly 6 60 ···· STAR-CCM+ Assembly 14 ···· STAR-CCM+ Assembly 19 ···· STAR-CCM+ Assembly 24 40 ···· STAR-CCM+ Assembly 28 ···· STAR-CCM+ Assembly 31 20 0.0 20.0 -20.0 40.0 **Temperature Difference (Celsius)**

STAR-CCM+ Transient Results

COBRA-SFS Transient Assembly 14 Thermocouple

The BWR DCS adds a well controlled test to our validation library

- Removes the variability of the demo cask
- Confirms ability to model vertical canister systems

5 kW 800 kPa

Case Name	Description	Max Assembly Heat load (kW)	Total System Heat Load (kW)	Peak Cladding Temperature (°C)	% Cladding Above 350°C
Conservative Base Case	Duke Energy estimate for actual load	0.969	29.5	314.0	0.0
3-Zone Design Basis	3-zone preferential design loading	1.200	35.5	356.2	1.0
4-Zone Design Basis	4-Zone preferential design loading	1.800	35.5	369.9	1.7
Case Five	Scaled 3-zone Design Basis	1.416	41.9	403.0	26.0
Case Six	Scaled 4-Zone Design Basis	2.034	40.1	403.2	20.1

4 Zone Design Basis vs Regulatory Peak Temperature

Case Title: NAC MAGNASTOR Ventilated Cask (WE 17x17 of a fuel)

Case Title: NAC MAGNASTOR Ventilated Cask (WE 17x17 of a fuel)

Regulatory Limit

Careful uncertainty analysis will enable decision making

- Best Estimate Plus Uncertainty (BEPU)
 - Common in other safety significant analyses
 - 95-95 confidence
- COBRA-SFS and other speedy methods enable uncertainty analysis
 - Approximately 50 times the speed of STAR-CCM+ with less hardware

Future work will focus on methodology development and validation

- Transient Modeling
 - HBU Demo Cask
- BWR assemblies
 - Dry Cask Simulator
- Horizontal Systems
 - Dry Cask Simulator
- Larger Thermal experiments
 - Next Generation Simulator
- Operational Systems
 - HBU Demo Cask

Clean. Reliable. Nuclear.

- PNNL-28915, Thermal Modeling of the TN-32B Cask for the High Burnup Spent Fuel Data Project
- PNNL-29058, High-Burnup Demonstration: Thermal Modeling of TN-32B Vacuum Drying and ISFSI Transients
- Durbin, S.G. and E.R. Lindgren, "Thermal-Hydraulic Experiments Using A Dry Cask Simulator," NUREG/CR-7250, U.S. Nuclear Regulatory Commission, Washington, DC, October 2018.
- PNNL-28424, Modeling of the Boiling Water Reactor Dry Cask Simulator
- L.E. Herranz, F. Feria, J. Penalva, M. LLoret, M. Galbán, J. Benavides, and G. Jiménez, Pulido, R.J.M., E.R. Lindgren, S.G. Durbin, A. Zigh, J. Solis, S.R. Suffield, D.J. Richmond, J.A. Fort, "Modeling Validation Exercises Using the Dry Cask Simulator," SAND2019-6079R, Sandia National Laboratories, Albuquerque, NM, May 2019.
- PNNL-28864, Thermal Analysis of High Decay Heat Loading Strategies in the MAGNASTOR System
- Lindgren, E.R., S.G. Durbin, R.J.M. Pulido, and A. Salazar, "Update on the Thermal Hydraulic Investigations of a Horizontal Dry Cask Simulator," SAND2019-11688R, Sandia National Laboratories, Albuquerque, NM, September 2019.

5 kW 800 kPa

PIRT top priorities for reducing uncertainty and/or bias

• Short Term Operations

- Most operational limitations are driven by loading and drying temperature limits
- Decay Heat
 - Highly accurate methodology exists but may not be implemented by all utilities
- Ambient Temperature
 - Site specific and load specific data can be used with high confidence

Example Pad Transient Case

Measured Data

- Wind data from local airport
- Ambient temperature on site

Model Compared to TC Measurements

- BC modified to include wind speed
- Model gives good agreement

Wind data from NOAA Local Climatological Data set, Louisa County's Freeman Field Airport (WBAN:03715).

COBRA-SFS Transient Results

	1	2	3	4	
5	6	7	8	9	10
11	12	13	14	15	16
17	18	19	20	21	22
23	24	25	26	27	28
	29	30	31	32	

•••••• 0.0

•••••• 2.4

..... 6.5

..... 10.0

..... 12.0

..... 15.0