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• Historical Context
• Thermal Modeling Phenomena Identification and Ranking Table (PIRT)
• Current Work

– High Burnup Demonstration Research Project Cask (HBU Demo)
– Boiling Water Reactor (BWR) Dry Cask Simulator (DCS)
– MAGNASTOR Heat Load Sensitivity

• Future
– Transient Modeling
– Horizontal Dry Cask Simulator

Outline



energy.gov/ne3

• Fuel temperature limits were not tightly controlled
• Large amounts of margin to thermal limits at normal 

operating conditions
• Operations are primarily concerned with offloading large 

numbers of old fuel assemblies
• It is useful and expedient to bias high temperatures

Historically, thermal design was not fully integrated
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• Operations require loading higher decay heats
• As loaded (non design basis) conditions are analyzed routinely
• Aging management is critical
• Best estimate calculations are needed for integrated decision making

Thermal design is now fully integrated
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• PIRT Deliberation Meeting
– October 22-24
– Sam Durbin (SNL)
– Chris Bajwa (NRC)
– Jim Fort (PNNL)
– Victor Figueroa (SNL)

• Initial Report Draft
– January 2020

• Finalize and publish PIRT Report
– Summer 2020

Phenomena Identification and Ranking Table Schedule
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• Storage Bolted
– TN-40

• Storage Vertical Ventilated
– MAGNASTOR
– HI-STORM

• Storage Horizontal Ventilated
– NUHOMS

• Short Term Operations
• Transportation

Scenarios
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Phenomena/Models/Parameters

Presenter
Presentation Notes
These generally have medium and high knowledge27 total parameters
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• Knowledge (Low – Medium – High): 
– Is the state of the art acceptable/ready to be used for best estimate plus uncertainty?

• Importance/Sensitivity (Low – Medium – High): 
– Is the figure of merit (temperature) sensitive to this?

• Opportunity (Yes – No): 
– Do we recommend prioritizing a reduction in uncertainty?

Phenomena Identification and Ranking Table Process

Presenter
Presentation Notes
There are no high importance low knowledges and few high importance medium knowledge. This is expected with a mature industry and engineering analysis
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• Total Clad Metrics
– Percent Surface Area
– Average Clad Temperatures

• Fuel Performance Calculations
– Axial Temperature Profile
– Load Specific

• Canister Temperature Maps
– Temperature at residual stress zones

Thermal analysis can support many evaluations

Presenter
Presentation Notes
Historically Models are developed with PCT in mind
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• Steady state modeling is complete
• Initial transient modeling is complete

– Loading
– Drying
– Pad

The HBU Demo Cask provides unique operational data
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High accuracy inputs are critical to high accuracy predictions 
(FSAR gap vs. 0.1 inch)
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STAR-CCM+ Transient Results
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COBRA-SFS Transient Assembly 14 Thermocouple
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• Removes the variability of the demo cask
• Confirms ability to model vertical canister systems

The BWR DCS adds a well controlled test to our validation library 
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5 kW 800 kPa
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Case Name Description Max Assembly 
Heat load (kW)

Total System 
Heat Load (kW)

Peak Cladding 
Temperature (°C)

% Cladding 
Above 350°C

Conservative 
Base Case

Duke Energy 
estimate for actual 
load

0.969 29.5 314.0 0.0

3-Zone Design 
Basis

3-zone preferential 
design loading 1.200 35.5 356.2 1.0

4-Zone Design 
Basis

4-Zone preferential 
design loading 1.800 35.5 369.9 1.7

Case Five Scaled 3-zone 
Design Basis 1.416 41.9 403.0 26.0

Case Six Scaled 4-Zone 
Design Basis 2.034 40.1 403.2 20.1

Fuel performance is not expected to change as heat loads increase
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4 Zone Design Basis vs Regulatory Peak Temperature

Design Basis

Regulatory Limit
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• Best Estimate Plus Uncertainty (BEPU)
– Common in other safety significant analyses
– 95-95 confidence

• COBRA-SFS and other speedy methods enable uncertainty analysis
– Approximately 50 times the speed of STAR-CCM+ with less hardware

Careful uncertainty analysis will enable decision making
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• Transient Modeling
– HBU Demo Cask

• BWR assemblies
– Dry Cask Simulator

• Horizontal Systems
– Dry Cask Simulator

• Larger Thermal experiments
– Next Generation Simulator

• Operational Systems
– HBU Demo Cask

Future work will focus on methodology development and validation
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Questions?
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• PNNL-28915, Thermal Modeling of the TN-32B Cask for the High Burnup Spent Fuel Data Project
• PNNL-29058, High-Burnup Demonstration: Thermal Modeling of TN-32B Vacuum Drying and ISFSI 

Transients
• Durbin, S.G. and E.R. Lindgren, “Thermal-Hydraulic Experiments Using A Dry Cask Simulator,” 

NUREG/CR-7250, U.S. Nuclear Regulatory Commission, Washington, DC, October 2018.
• PNNL-28424, Modeling of the Boiling Water Reactor Dry Cask Simulator 
• L.E. Herranz, F. Feria, J. Penalva, M. LLoret, M. Galbán, J. Benavides, and G. Jiménez, Pulido, R.J.M., 

E.R. Lindgren, S.G. Durbin, A. Zigh, J. Solis, S.R. Suffield, D.J. Richmond, J.A. Fort, "Modeling 
Validation Exercises Using the Dry Cask Simulator," SAND2019-6079R, Sandia National Laboratories, 
Albuquerque, NM, May 2019.

• PNNL-28864, Thermal Analysis of High Decay Heat Loading Strategies in the MAGNASTOR System
• Lindgren, E.R., S.G. Durbin, R.J.M. Pulido, and A. Salazar, “Update on the Thermal Hydraulic 

Investigations of a Horizontal Dry Cask Simulator,” SAND2019-11688R, Sandia National Laboratories, 
Albuquerque, NM, September 2019.
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5 kW 800 kPa
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• Short Term Operations
– Most operational limitations are driven by loading and drying temperature limits

• Decay Heat
– Highly accurate methodology exists but may not be implemented by all utilities

• Ambient Temperature
– Site specific and load specific data can be used with high confidence

PIRT top priorities for reducing uncertainty and/or bias
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Example Pad Transient Case

Measured Data
• Wind data from local airport
• Ambient temperature on site

Model Compared to TC Measurements
• BC modified to include wind speed
• Model gives good agreement

Wind data from NOAA Local Climatological Data set, Louisa County’s Freeman Field Airport (WBAN:03715).

Presenter
Presentation Notes
Louisa County’s Freeman Field Airport, which is located about 17 kilometers (10.5 miles), 250° southwest from the North Anna Nuclear Power Station. 
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COBRA-SFS Transient Results
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