

Horizontal Dry Cask Simulator Testing and Applications to Blind Model Validation

Sam Durbin, Ramon Pulido, Eric Lindgren, and Alex Salazar Sandia National Laboratories Nuclear Waste Technical Review Board Alexandria, VA November 19, 2019

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. SAND2019-13936 PE.

HDCS Overview and Construction

Horizontal Dry Cask Simulator (HDCS) Overview

Source: http://us.areva.com/EN/home-3138/areva-nuclear-materials-tn-americas--nuhoms-used-fuel-storage-system.html#tab=tab6

- Purpose: Validate assumptions in computational thermalhydraulic modeling for spent fuel cask thermal design analyses
 - Used to determine steady-state cladding temperatures in dry casks
 - Needed to evaluate cladding integrity throughout storage cycle
- Measure temperature profiles for a wide range of decay power and helium cask pressures
 - Mimic conditions for <u>horizontal</u> dry cask systems with canisters
 - Simplified geometry with well-controlled boundary conditions
 - Provide measure of mass flow rates and temperatures throughout system
- Use existing prototypic BWR Incoloy-clad test assembly
 - Electrically-heated fuel simulators

Horizontal Dry Cask Simulator (HDCS) Overview

- Repeat vertical dry cask simulator (DCS) testing for horizontal storage configuration
 - Wide range of test parameters
 - Decay heats, gas backfills, and internal pressures
 - Collect validation data
 - Temperatures and air mass flow rates

Depictions of horizontal storage modules

Source: http://us.areva.com/home/liblocal/docs/Catalog/AREVA-TN/ANP_U_299_V5_17_ENG_NUHOMS_HSM.pdf

Prototypic Assembly Hardware

Upper tie plate

BWR channel, water tubes and spacers

- Most common 9×9 BWR fuel in US
- Prototypic 9×9 BWR hardware
 - Full length, prototypic 9×9 BWR components
 - Electric heater rods with Incoloy cladding
 - 74 fuel rods
 - 8 of these are partial length
 - Partial length rods run 2/3 the length of assembly
 - 2 water rods
 - 7 spacers

Thermocouple (TC) attached directly to cladding

Pressure Vessel Hardware

- Scaled components with instrumentation well
- Coated with ultra-high-temperature paint

Assembly Modifications

- Modifications made to maintain concentricity and enhance heat conduction
 - Added stabilizers
 - Between channel box and basket
 - Between basket and canister wall
 - Full length to limit convective cells
 - Keep from damaging existing TCs
 - Added aluminum bridge plate
 - Maintain concentricity while reorienting to horizontal configuration
 - Establish conduction pathway between channel box and basket that is seen in commercial storage systems

Assembly Modifications

- Basket stabilizers provide limited conductive paths between the basket and the pressure vessel
 - 1-in length stitch welds at 24-in intervals from the basket bottom to the top
- Stabilizers also meant to limit convective cells

Bottom View

Middle View

Top View

Facility Transition

- After performing in-vessel
 modifications
 - HDCS moved from inside of vessel to the 3rd floor
 - Gently rotated assembly to horizontal configuration
- Constructed vault enclosure
 - Inlet and outlets
- Installed additional instrumentation
- Reconnected to DAQ
 - Power control
 - Instrumentation
- Conducted testing

Dimensional Analyses

- Internal scaling within fuel maintained by matching prototypic geometry
 - Known scaling distortions
 - Power: Higher surface-area-to-volume
 - Internal heat transfer: Reduced conductivity between structures
- External dimensionless groups may appear dissimilar at first inspection, but...
 - Reynolds: Irregular regime for $270 < \text{Re}_{\text{D}} < 5,000$
 - Modified Rayleigh: 3-D wake separation (turbulence) for $Ra_{D}^{*} > 3.5 \times 10^{9}$

	Horizontal		
Parameter	HDCS Low Power	HDCS HDCS Low Power High Power	
Power (kW)	0.5	5.0	24
Re _D	280	730	2,000
Ra _D *	1.3E+09	1.3E+10	1.4E+13
Nu _{DH}	30	50	170

HDCS Modeling Validation

HDCS Modeling Validation Exercise

- Results provided for two cases of the overall test matrix
 - 2500 W power, 100 kPa pressure, helium backfill
 - 2500 W power, 100 kPa pressure, air backfill
- Limited data set provided to calibrate models for blind model validation exercise

	Pressure	Power
Fill Gas	(kPa)	(W)
	100	500
	100	1000
	100	2500
Hellum	100	5000
	800	500
	800	5000
Air	100	500
	100	1000
	100	2500
	100	5000

HDCS Modeling Validation Exercise

• Comparison metrics for all modelers

Metric	Notes
Peak Cladding Temperature	PCT
PCT location	<i>x</i> , <i>y</i> , <i>z</i>
Air mass flow rate	, m _{Air}
Axial temperature profile	T(z) at WEU (5 locations)
Transverse x-axis temp. profile	T(x) at $z = 1.219$ m (11 locations)
Transverse y-axis temp. profile	T(y) at $z = 1.829$ m (7 locations)

HDCS Testing Steady-State Results

2500 W, 100 kPa Helium T(z)

Rod Identifier	<i>z</i> (m)	Temperature (K)
DT (PCT)	1.219	559
	0.610	555
	1.219	553
WEU	1.829	548
	2.438	537
	3.658	466
	0.152	506
	0.305	534
	0.457	542
	0.610	550
	0.762	552
	0.914	552
	1.067	551
	1.219	554
65	1.372	552
03	1.549	548
	2.286	542
	2.438	538
	2.616	527
	2.743	523
	2.896	518
	3.023	513
	3.200	509
	3.353	503
	1.829	538
	1.981	538
CY	3.505	482
GX	3.658	463
	3.810	408
	3.962	387

2500 W, 100 kPa Helium T(z)

			→ <i>Z</i> ,	
		700	Heliu	ım
	•	550 ⁻		DT (PCT) WEU
VELL (5 locations)	ર્ચ લ	500		
x = 1.219 m (11 locations) x = 1.829 m (7 locations)	rature	550		
	Tempe	500 450	Heater rod TC at Location <u>DT</u>	
	۷	400	Water rod TC at Location EU	
	3	350 [0	(WEU) 0.5 1 1.5 2	2.5 3 3.5 4
			z (m))

Metric	Notes	
Peak Cladding Temperature	PCT	
PCT location	x, y, z	
Air mass flow rate	ṁ _{Air}	
Axial temperature profile	T(z) at WEU (5 locations)	
Transverse x-axis temp. profile	T(x) at $z = 1.219$ m (11 locations)	
Transverse y-axis temp. profile	T(y) at $z = 1.829$ m (7 locations)	

2500 W, 100 kPa Air T(z)

Rod Identifier	<i>z</i> (m)	Temperature (K)			→ <i>Z</i> ,
DT (PCT)	0.610	647			
	0.610	645	° ·		
	1.219	637			
WEU	1.829	630			
	2.438	615			
	3.658	527			
	0.152	603			
	0.305	632		-	
	0.457	638		700	
	0.610	641			
	0.762	641		650	
	0.914	640		030	
	1.067	638			
	1.219	639		600	•
<u> </u>	1.372	637		000	
65	1.549	633	e		
	2.286	622		550	
	2.438	617	at		Heater rod TC
	2.616	603	eL	500	Location DT
	2.743	597	d	500	
	2.896	593	E E		
	3.023	590	Le	450	DT (PCT)
	3.200	585	· ·	450	
	3.353	579			WEU
	1.829	622		400	◆ CS
	1.981	622		'	A GX
C V	3.505	555		2.50	- UA
GX	3.658	522		350	
	3.810	454		(0.5 1
	3.962	431			

2500 W, 100 kPa Air T(z)

			Air
		700	
		650	
	(k)	600	
ns) s)	ature	550	Heater rod TC at
	mper	500	
	Te	450	★ DT (PCT) WEU Weturned TO at
		400	• CS • GX • CS •
		350 l (0.5 1 1.5 2 2.5 3 3.5 4
			z (m)

Metric	Notes		
Peak Cladding Temperature	PCT		
PCT location	x, y, z		
Air mass flow rate	m _{Air}		
Axial temperature profile	T(z) at WEU (5 locations)		
Transverse x-axis temp. profile	T(x) at $z = 1.219$ m (11 locations)		
Transverse y-axis temp. profile	T(y) at $z = 1.829$ m (7 locations)		

2500 W, 100 kPa Helium T(x) (z = 1.219 m)

	x	Temperature
Location	(m)	(K)
Vault Top	-0.169	368
Pressure Vessel (PV) Top	-0.137	421
Basket Top	-0.090	462
Channel Top	-0.068	506
EQ	-0.057	536
ES	-0.029	558
WEU	0.000	553
Channel Bottom	0.068	477
Basket Bottom	0.090	464
Pressure Vessel (PV) Bottom	0.137	414
Vault Bottom	0.421	323

Metric	Notes
Peak Cladding Temperature	PCT
PCT location	<i>x</i> , <i>y</i> , <i>z</i>
Air mass flow rate	m _{Air}
Axial temperature profile	T(z) at WEU (5 locations)
Transverse x-axis temp. profile	T(<i>x</i>) at <i>z</i> = 1.219 m (11 locations)
Transverse y-axis temp. profile	T(y) at $z = 1.829$ m (7 locations)

2500 W, 100 kPa Air T(x) (z = 1.219 m)

	x	Temperature
Location	(m)	(K)
Vault Top	-0.169	367
Pressure Vessel (PV) Top	-0.137	420
Basket Top	-0.090	486
Channel Top	-0.068	562
EQ	-0.057	617
ES	-0.029	645
WEU	0.000	637
Channel Bottom	0.068	534
Basket Bottom	0.090	484
Pressure Vessel (PV) Bottom	0.137	408
Vault Bottom	0.421	321

Metric	Notes
Peak Cladding Temperature	PCT
PCT location	<i>x</i> , <i>y</i> , <i>z</i>
Air mass flow rate	m _{Air}
Axial temperature profile	T(z) at WEU (5 locations)
Transverse x-axis temp. profile	T(<i>x</i>) at <i>z</i> = 1.219 m (11 locations)
Transverse y-axis temp. profile	T(y) at $z = 1.829$ m (7 locations)

2500 W, 100 kPa Helium T(y) (z = 1.829 m)

				Helium												
				030												
Location	<i>y</i> (m)	Temperature (K)		600	WF	EU										
WEU	0.000	548	$\overline{\mathbf{O}}$	550												
GU	0.029	550	(K	000-												
IU	0.057	532	re	500						- Cha	annel					
Channel	0.068	499	tu	500			0.0									
Basket	0.089	459	ra							_						
Pressure Vessel (PV)	0.137	416	mpe	450						_				<u> </u>	V	
Vault	0.165	334	Te	400					P/							
					8		H									
letric	Note	S		250												
CT location		7		350	1										_	
ir mass flow rate	m _{Air}	L		1												
xial temperature profile	T(<i>z</i>)	at WEU (5 location	s)	300						· · · · ·	7					
ransverse x-axis temp.	profile $T(x)$	at z = 1.219 m (11	locations)	- () 0()2 0	04	0.06	0.0	78	0.1	0.12	0 1	14 (16	0.1
ransverse y-axis temp.	profile I (y)	at $z = 1.829 \text{ m} (7 \text{ km})$	ocations)	_ `	, 0.0	0.	υт	0.00	0.0		V.1	0.12	U.]	I-T U	•10	0.1
										<i>y</i> (m	l)					

2500 W, 100 kPa Air T(y) (z = 1.829 m)

				650				Air					
				030	-WEU								
Location	<i>y</i> (m)	Temperature (K)		600			-	Ch	annel				
WEU	0.000	630	$\overline{\mathbf{C}}$	550									
GU	0.029	634	E	550									
IU	0.057	607	Le	500									
Channel	0.068	552	(n)	500		Le	0						
Basket	0.089	481	rai						•				
Pressure Vessel (PV)	0.137	414	mpe	450	\subset							- PV	
Vault	0.165	333	Te	400			P						
Metric	Note	S											
Peak Cladding Temperat	ure PCT			350									
PCT location	<u>, X, У,</u>	Ζ		-								-	
Axial temperature profile	T(z)	at WEU (5 locations	s)	300 L									
Fransverse x-axis temp.	profile $T(x)$	at z = 1.219 m (11	locations)	500	0.00	0.04	0.00	0.00	0.1	0.10	0.1.4	0.10	0.10
Fransverse y-axis temp.	profile T(y)	at <i>z</i> = 1.829 m (7 lo	cations)	0	0.02	0.04	0.06	0.08	0.1	0.12	0.14	0.16	0.18
								y (m)				

Transients

- Expanded Uncertainty: $U_{PCT} = \pm 6.5 K$
- Focus is on steady-state region (dT/dt < 0.3 K/h)

Air Mass Flow Rate

- Expanded Uncertainty: $U_{\dot{m}, Total} = \pm 3.0 \times 10^{-4} \text{ kg/s}$
- Total air mass flow rate from 4 inlet ducts calculated from hot wire anemometer profiles

23

Summary

- Horizontal Dry Cask Simulator testing
 - Construction completed May 2019
 - Test results for limited data sets completed August 2019
 - 2500 W, 100 kPa, helium backfill
 - 2500 W, 100 kPa, air backfill
 - Results reported in "Update on the Thermal Hydraulic Investigations of a Horizontal Dry Cask Simulator" – SAND2019-11688 R
 - Test results for rest of test matrix currently under review
 - Exploration of the repeatability of parameter space planned for FY20
- Applications to blind model validation
 - Limited data sets provided for model calibration
 - Modelers will predict temperatures and air mass flow rates for rest of test runs

		Pressure	Power			
Fill C	Gas	(kPa)	(W)			
		100	500			
		100	1000			
	um	100	2500			
	Air	100	5000			
		800	500			
			800	5000		
		100	500			
A		100	1000			
		100	2500			
		100	5000			

Vertical Dry Cask Simulator Testing

Aboveground Configuration

- BWR Dry Cask Simulator (DCS) system capabilities
 - Power: 0.1 20 kW
 - Pressure vessel
 - Vessel temperatures up to 400 °C
 - Pressures up to 2,400 kPa
 - ~200 thermocouples throughout system (internal and external)
 - Air velocity measurements at inlets
 - Calculate external mass flow rate
- Testing Completed August 2016
 - 14 data sets collected
 - Transient and <u>steady state</u>

Validation Exercise Description

- Compare models and test results for reduced parameter set of available, steady-state data
 - Aboveground configuration only
 - 4 cases 1) 0.5 kW, 100 kPa 3) 5.0 kW, 100 kPa
 - 2) 0.5 kW, 800 kPa 4) 5.0 kW, 800 kPa
- 6 model submissions
 - 5 computational fluid dynamics (CFD) models, 1 subchannel model
 - Three models use porous media representation of the fuel region
 - Two models explicitly represent fuel geometry
 - One model represents the fuel as quasi-3D rods
- Temperature comparisons throughout
 - Fuel (minimum, average, and maximum) as function of height
 - Channel box, basket, canister (pressure vessel), and overpack (shell) as function of height
 - Transverse temperature profiles at PCT locations

Model Descriptions

- The 6 models can be categorized by:
 - Code type
 - Fuel representation
 - Cross-sectional symmetry

Modeling Contributor	Code Type	Fuel Representation	Cross- Sectional Symmetry	
NRC	CFD	Porous Media	1/4	\mathbf{P}
PNNL	CFD	Explicit	1/4	\square
PNNL	CFD	Porous Media	1/4	$\boldsymbol{\gamma}$
PNNL	Subchannel	Quasi-3D Rods	Full	+
CIEMAT	CFD	Porous Media	1/8	V/
ENUSA	CFD	Explicit	1/2	\mathbf{P}

Fuel Comparisons (0.5 kW, 100 kPa)

Fuel Comparisons (5 kW, 800 kPa)

