

Gas Migration in Clay-Based Materials – International Collaboration Activities as Part of the DECOVALEX Project

U.S. Nuclear Waste Technical Review Board Workshop Burlingame, California April 24-25, 2019 Jonny Rutqvist Senior Scientist Energy Geosciences Division Lawrence Berkeley National Laboratory Berkeley, California

Clay Gas Transport Team

Lawrence Berkeley National Laboratory Jonny Rutqvist, Kunhwi Kim, Jens Birkholzer

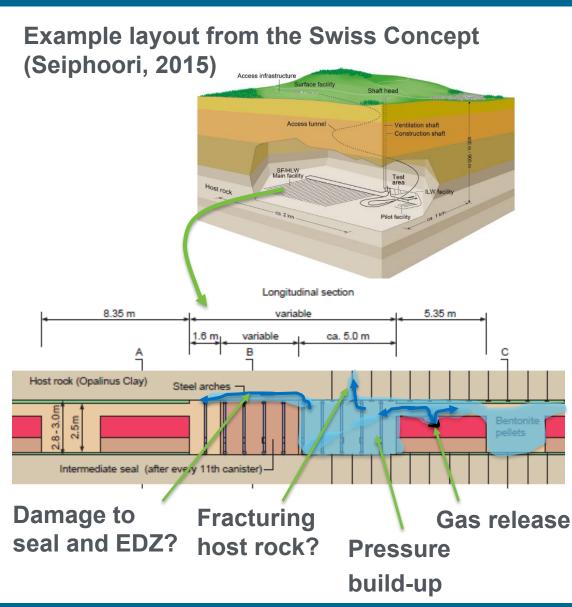
Sandia National Laboratories

Yifeng Wang

International Collaboration

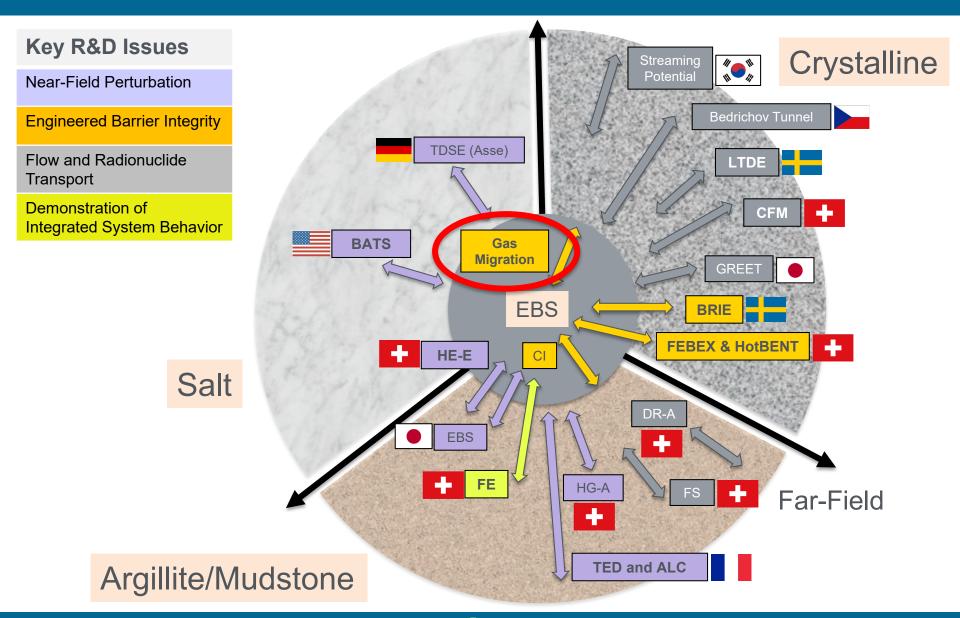
DECOVALEX-2019 Task Lead: Jon Harrington, British Geological Survey

DECOVALEX-2019 Research Teams (8 teams from 8 countries)


Sources of Gas

- In a repository for heat emitting radioactive waste gas will be generated through a number of processes including:
 - Corrosion of metals (Hydrogen)
 - Radioactive decay of the waste (Radon etc)
 - Radiolysis of water (Hydrogen)
 - Microbial activities

- If production exceeds diffusion capacity a gas phase forms
- Gas will accumulate until its pressure becomes sufficiently large to enter the engineered barrier system (EBS) or host rock
- Understanding gas generation and migration is a key issue in the assessment of repository performance

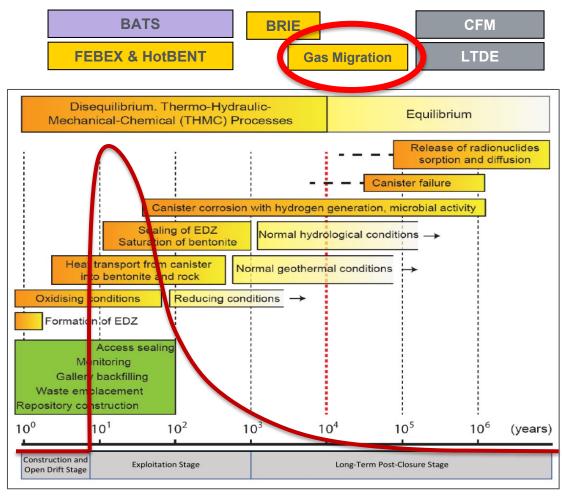

Relevance to Performance

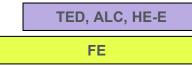
The gas production may impair the safety functions of the EBS and host rock:

- Where will produced gas go?
- Rate of gas production vs migration and release?
- Permanent damage to the buffer, EDZ, seals or host rock?
- Could the gas de-hydrate the buffer?
- Colloid transport and erosion of buffer material?
- Microbial activities?

International URL Portfolio in a Nutshell

Repository Phases and Relevant Processes


Key R&D Issues


Near-Field Perturbation

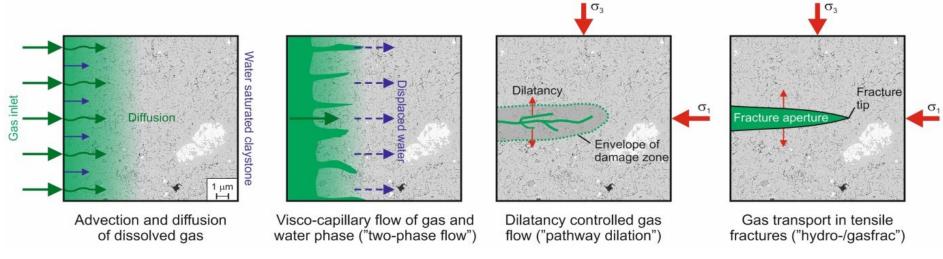
Engineered Barrier Integrity

Flow and Radionuclide Transport

Demonstration of Integrated System Behavior

State of the Art with R&D Gaps and Needs

- Transport of gases in clay-based buffer materials has been the subject of several international projects (e.g. LASGIT, FORGE)
- Substantial insight has been gained on gas transport processes
- Still the basic mechanisms of gas transport in bentonite and low permeability host rocks are not understood in sufficient detail, and therefore the predictive capacities are limited


State of the Art with R&D Gaps and Needs

- Transport of gases in clay-based buffer materials has been the subject of several international projects (e.g. LASGIT, FORGE)
- Substantial insight has been gained on gas transport processes
- Still the basic mechanisms of gas transport in bentonite and low permeability host rocks are not understood in sufficient detail, and therefore the predictive capacities are limited

⇒ Predictive capabilities are being developed along with participation in DECOVALEX-2019 with access to experimental data for model testing and validation

DECOVALEX-2019 Task: Modeling Gas Injection Gas Experiments

The purpose is to better understand the processes governing the advective movement of gas in low permeability materials (Bentonite and Claystone)

⁽Marcshall et al., 2005)

- British Geological Survey (BGS) provides laboratory data, expertise and lead this DECOVALEX-2019 task
- 8 Research Teams from 8 countries analyze and model the data

DECOVALEX-2019 Research Teams

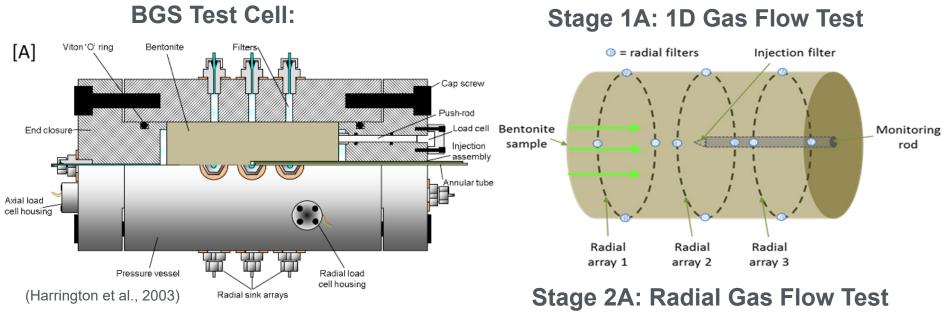
BGR/UFZ (Germany): Federal Institute for Geosciences and Natural Resources and the Helmholtz Centre for Environmental Research.

CNSC (Canada): Canadian Nuclear Safety Commission.

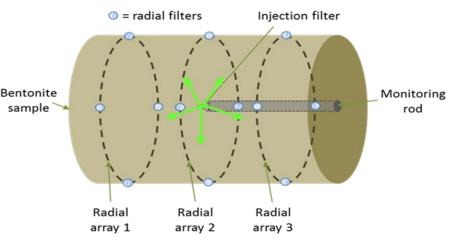
KAERI (Korea): Korea Atomic Energy Research Institute

LBNL (United States of America): Lawrence Berkeley National Laboratory.

NCU/TPC (Taiwan): National Central University and the Taiwan Power Company (Taipower).

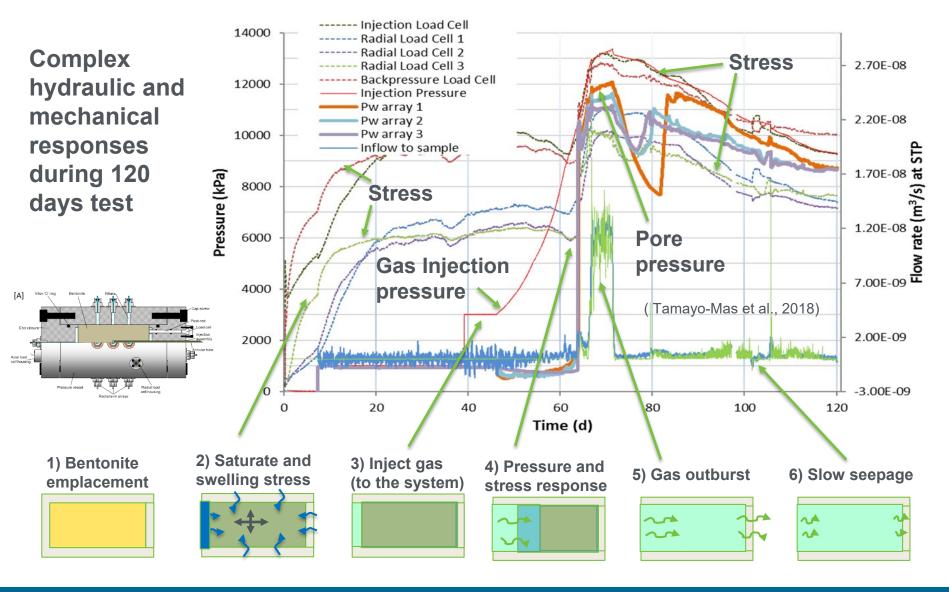


Quintessa/RWM (United Kingdom): Quintessa Ltd on behalf of Radioactive Waste Management.

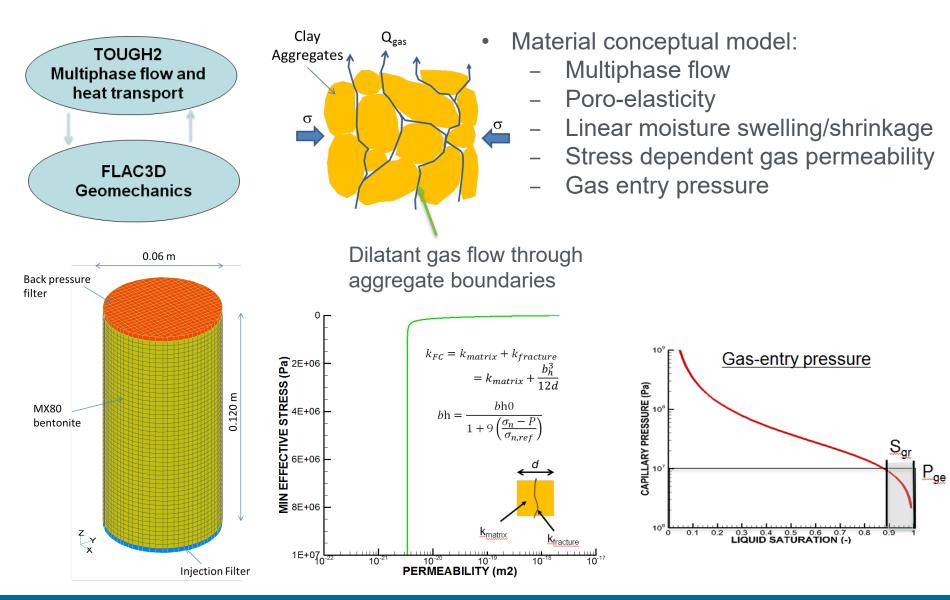


- SNL (United States of America): Sandia National Laboratories.
-) UPC/Andra (Spain/France): Universitat Politècnica de Catalunya, funded by l'Agence nationale pour la gestion des des déchets radioactifs.

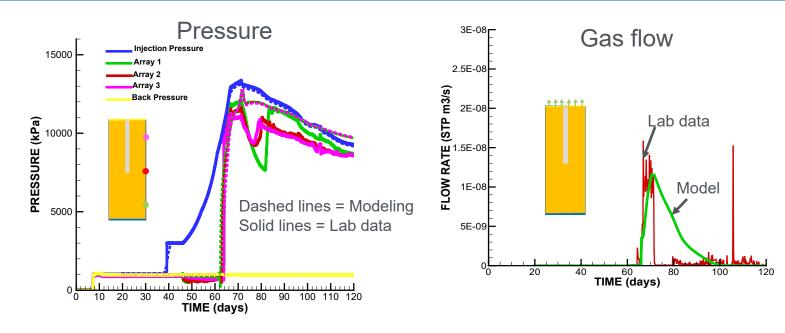
Gas Flow Experimental Data on Bentonite

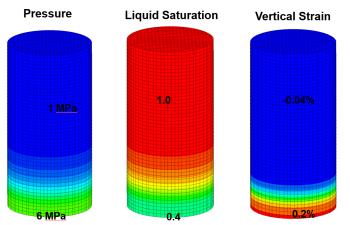


- MX80 bentonite confined into the cell
- Saturate the sample with water to develop swelling stress
- Inject hydrogen gas
- Monitor pressure, gas outflow, and stress during 4 month

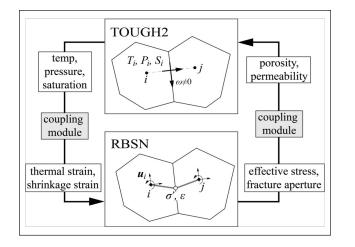


(Tamayo-Mas et al., 2018)

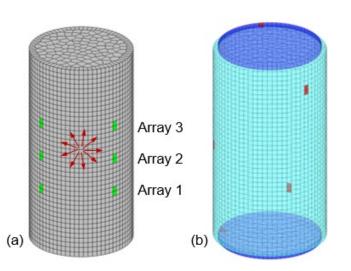

Stage 1A Tests Data (1D flow, stress, pressure)


LBNL-Continuum Using TOUGH-FLAC

LBNL-Continuum Best Matched Case



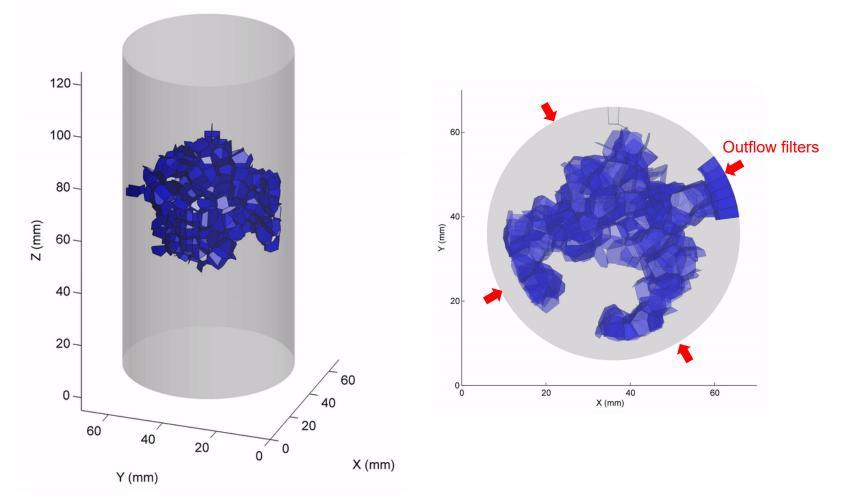
Before Gas Breakthrough



- Abrupt gas entry (gas entry pressure)
- Peak flow rate depends on stress-k function
- Flow and stress after peak?
- Hydro-mechanical model quite simple with several calibration parameters

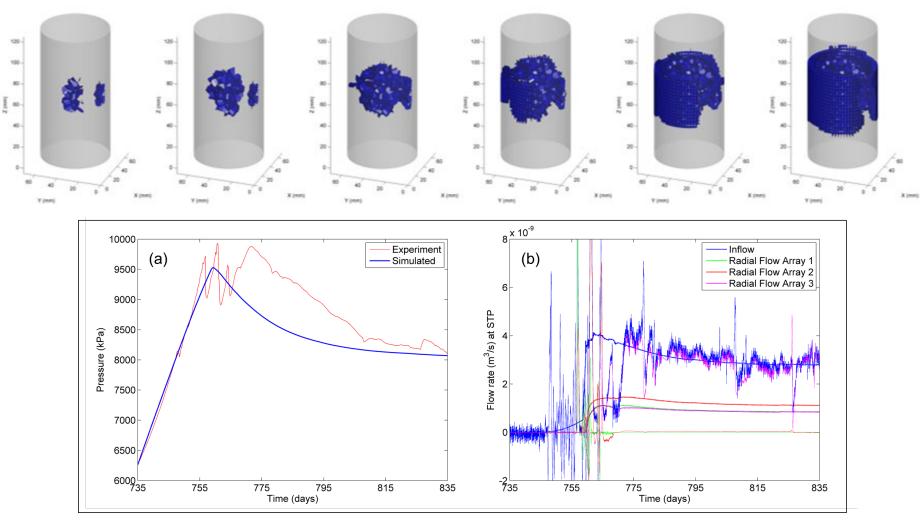
LBNL-Discrete Fracture Model (TOUGH-RBSN)

Model Grid Stage 2A



RBSN = Rigid Block Spring Network

- Rock matrix and fractures conduct fluid flow and deform
- Fracturing is represented by the breakage of the springs (lattice elements) linking adjacent cells
- Fracture permeability depend on aperture


LBNL-Discrete Fracture Model (TOUGH-RBSN)

Movie of fracture (dilatant flow path) evolution:

(Kim et al., 2018, TOUGH Symposium)

LBNL-Discrete Fracture Model (TOUGH-RBSN)

• Outflow more homogeneous (all 3 arrays) in the model

(Kim et al., 2018, TOUGH Symposium)

Modelling Approaches of DECOVALEX Teams

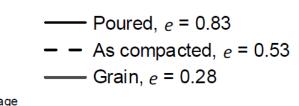
• Two-phase flow continuum models

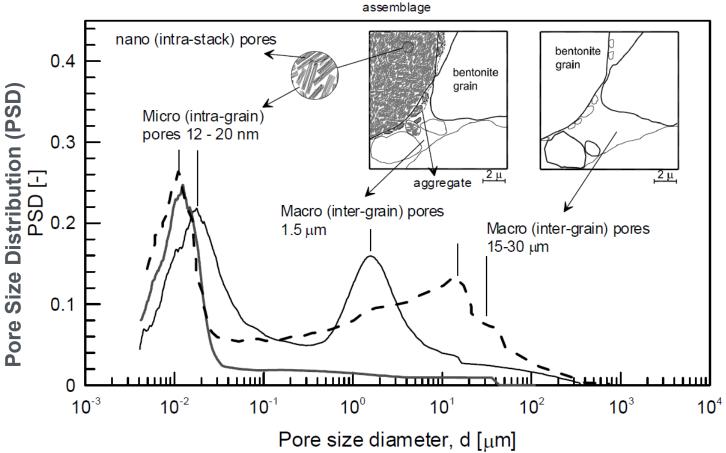
- 1. UPC/Andra-H: rigid medium
- 2. LBNL-C-E: elasticity
- 3. CNSC-E: elasticity
- 4. CNSC-D: damage
- 5. KAERI-D: damage
- 6. BGR/UFZ-P: elastoplasticity
- 7. CNSC-P: elastoplasticity
- 8. NCU/TPC-E: elasticity

With preferential pathways

- 9. Quintessa/RWM-Cap: capillary model
- 10. UPC/Andra-HM-E1: elasticity
- 11. UPC/Andra-HM-E2: elasticity
- 12. UPC/Andra-HM-P: elastoplasticity
- Discrete approaches
 - 13. LBNL-D: discrete fracture network
- Other
 - 14. SNL: chaotic model (conceptual)

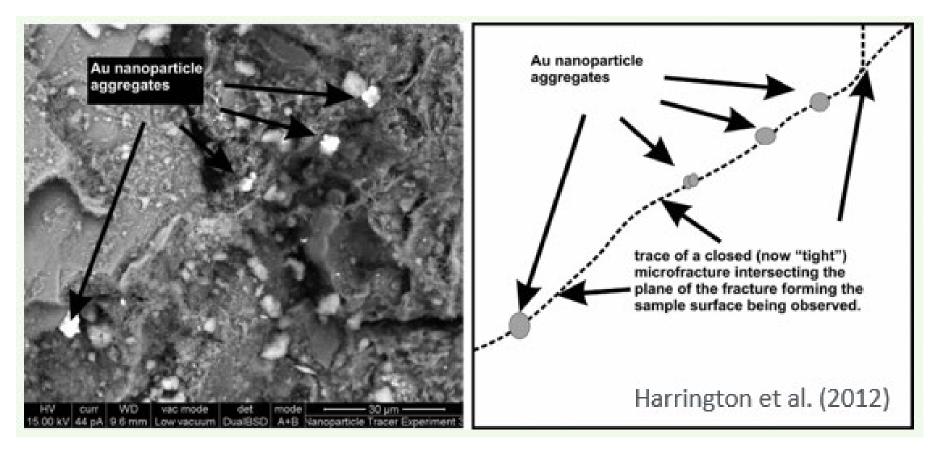
- A wide range of model approaches
- Some models match the data better


But:

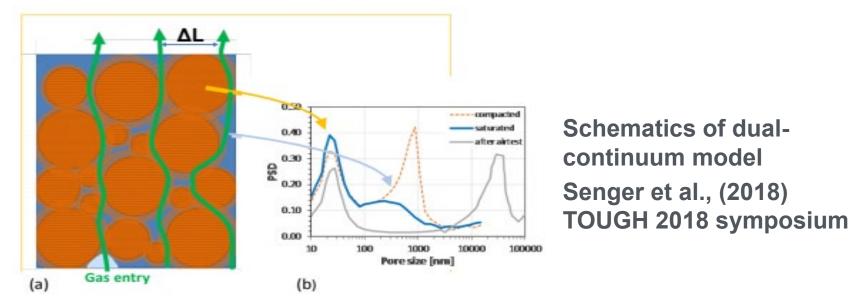

- Do they correctly model the underlying micro-to-macro scale mechanisms?
- Can they be up-scaled and applied at the repository scale?

(Tamayo-Mas et al., 2018)

Dual Structure of Bentonite

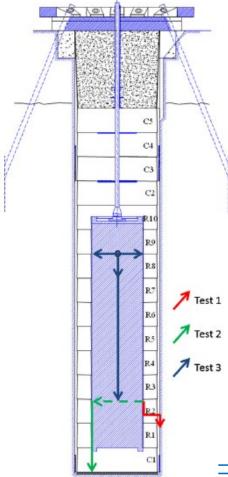

Gas flow expected to go through a network connected macro pores

(Seiphooir 2015: Pore structure from Mercury Intrusion Porosimetry (MIP) analysis Scanning Electron Microscopy (SEM) observations)


Dilatant Flow Observations

Gas injection test (with nanoparticles) designed to demonstrate the presence of pressure-induced dilatant pathways in Boom Clay

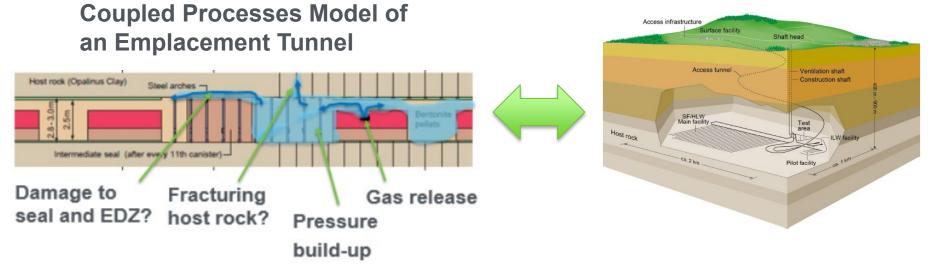
Avenue for Future Model Developments?


1) TOUGH-FLAC simulator with Barcelona Expansive Model considers the two structural levels and could be applied to study gas migration

2) TOUGH-RBSN discrete fracture model can be further developed to consider long-term sealing and healing of dilated flow paths

But, need to be validated against laboratory and (if possible) field data, and to be demonstrated for application at the large scale....

Potential DECOVALEX-2023 Task (Lasgit)


- The installation phase, including the deposition of canister and buffer, was finalized in 2005.
- Hydration of bentonite
- Several hydraulic and gas injection tests since 2008.

 \Rightarrow Access to a unique data set for model validation at a relevant field scale!

(SKB, 2017, TR-17-10)

Input to Geologic Safety Assessment Analysis (GDSA) and Performane Assessment (Pa)

- Near field of emplacement tunnels in different parts of a repository, for different FEPs such as nominal case or cases of extensive gas generation.
- Output to the PA model: (1) changes in flow properties (e.g. permeability and porosity) in the near-field, including the buffer and EDZ, (2) inform PA about local flow created by coupled processes.

PA Model of Entire Repository

Example layout from the Swiss Concept (Seiphoori, 2015)

Summary

- The study of gas flow migration in clay-based material has been to topic of several international studies, increasingly over the last 5-10 years
- Still the basic mechanisms of gas transport in bentonite and low permeability host rocks are not understood in sufficient detail, and therefore the predictive capacities are limited
- Further work should strive to better represent the correct underlying physics, such as dual structure behavior, in models that should still be efficient to be applied at a repository tunnel scale
- International projects, such as the DECOVALEX project, provide avenues for faster capability developments through exchanges of ideas and collaborations, and through access to experimental data

References

- Harrington, J.F., Milodowski, A.E., Graham, C.C., Rushton, J.C., and Cuss, R.J. (2012) Evidence for gas-induced pathways in clay using a nanoparticle injection technique. Mineralogical Magazine. December 2012, Vol. 76(8), pp.3327-3336. DOI: 10.1180/minmag.2012.076.8.45.
- Harrington, J.F. and S.T. Horseman. 2003. Gas migration in KBS-3 buffer bentonite: Sensitivity of test parameters to experimental boundary conditions. Report TR-03-02. Svensk Kärbränslehantering AB (SKB), Stockholm, Sweden.
- Harrington, J.F., C.C. Graham, R.J. Cuss and S. Norris. 2017. Gas network development in a precompacted bentonite experiment: Evidence of generation and evolution. Applied Clay Science, 147, 80-89.
- Kim K., Rutqvist J., Nakagawa S. and Birkholzer J. TOUGH-RBSN simulator for hydraulic fracture propagation within fractured media: Model validations against laboratory experiments. Computers & Geosciences, 108, 72–85 (2017).
- Kim K., Rutqvist J., Harrington J.F., Tamayo-Mas E., and Birkholzer J.T. Discrete representation of gas migration and fracture processes in compacted bentonite clay. Proceedings TOUGH Symposium 2018, Berkeley, California, October 8-10 (2018).
- Marschall, P., Horseman, S. & Gimmi, T. (2005): Characterisation of gas transport properties of the Opalinus Clay, a potential host rock formation for radioactive waste disposal. Revue de l'Institut Français du Pétrole, 60/1&2, 2005).
- NAGRA (2008). Effects of post-disposal gas generation in a repository for low- and intermediate-level waste sited in the Opalinus Clay of Northern Switzerland. NAGRA Technical Report, NTB 08-07.
- Rutqvist J. An overview of TOUGH-based geomechanics models. Computers & Geosciences, 108, 56–63 (2017). Seiphoori A (2015). Thermo-hydro-mechanical characterisation and modelling of Wyoming granular bentonite. NAGRA, Technical Report NTB 15-05.
- SKB (2017) Äspö Hard Rock Laboratory Annual Report 2016. Swedish Nuclear Fuel and Waste Management CO (SKB) Technical Report TR-17-10.
- Tamayo-Mas, E., J.F. Harrington, H. Shao, E.E. Dagher, J. Lee, K. Kim, J. Rutqvist, S.H. Lai, N. Chittenden, Y. Wang, I.P. Damians, and S. Olivella, Numerical modelling of gas flow in a compact clay barrier for DECOVALEX-2019, Proceedings of ARMA/DFNE 2018 (DFNE 18-623), 2018.

Acronyms and Abbreviations

ANDRANational Radioactive Waste Management Agency, FranceBGRFederal Institute for Geosciences & Natural Resources, GermanyBGSBritish Geological SurveyCNSCCanadian Nuclear Safety Commission, CanadaDECOVALEXDEvelopment of COupled Models and their VALidation Against EXperimentDOEDepartment of Energy, USAEBSEngineered Barrier SystemEDZExcavation Damage Zone (or Excavation Disturbed Zone)	eriments
FEPs Features, Events, and Processes	
FLAC Fast Lagrangian Analysis of Continua	
FORGE Fate Of Repository Gases	
KAERI Korea Atomic Energy Research Institute, Republic of Korea	
LASGIT Large-scale Gas Injection Test	
LBNL Lawrence Berkeley National Laboratory	
NAGRA Swiss waste management organization	
NCU National Central University, Taiwan	
PA Performance Assessment	
RBSN Rigid Block Spring Network	
RWM Radioactive Waste Management Limited, UK	
SKB Swedish Nuclear Fuel and Waste Management, Sweden	
SNL Sandia National Laboratory	
STP Standard Temperature and Pressure	
TOUGH Transport Of Unsaturated Groundwater and Heat	
TPC Taiwan Power Company, Taiwan	
UFZ Helmholtz Centre for Environmental Research	
UPC Universitat Politècnica de Catalunya, Spain	

Questions?

Clean. Reliable. Nuclear.

28