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• Material: 
– Bentonite granular/blocks

• Featured properties: 
– Swelling

– Low permeability

– High retardation capability

• Safety functions:
– Limiting flow and transport in 

the near field

– Mechanical support including 

damping rock-shear movement, 

preventing canister sinking and 

limiting pressure on canisters

– Reducing microbial activity

– Retarding migration of 

radionuclides

Engineered Barrier System (EBS) in a Geological 
Repository

(ENRESA, 2000)
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To ensure the favorable features of EBS in the 

long term, understanding and modeling of 

coupled thermal, hydrological, mechanical and 

chemical (THMC) processes are critical

Processes Involved in EBS 

Galleries 

(Modified from Leupin et al, 2014) 
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Modeling THMC coupled processes in an EBS is very      

data-demanding:

• Detailed characterization of thermal (e.g. thermal conductivity), 

hydrological (e.g. permeability), mechanical (e.g. bulk modulus) and 

chemical (e.g. ion concentration in pore water and mineralogical 

composition) properties

• THMC properties evolve as EBS undergoes heating and hydration 

and usually are described by constitutive relationships in a model—

experiments are needed to verify these relationships 

• A coupled THMC model, which is composed of the basic THMC 

equations and constitutive relationships, has to be verified by 

laboratory experiments and ultimately large scale in situ tests

• Micro-scale experiments are needed to understand fundamental 

interactions of THMC processes

Data Needed to Understand/Model EBS
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Roadmap to Study Long-term Stability of EBS

Developing simulators for coupled THMC processes 

Evaluating key THMC processes with a large scale in situ 

experiment at 100 oC

Studying long-term alteration of bentonite at high 

temperature (200 oC) with exploratory generic models

Further testing THMC models with experiments at 200 oC, 

and improving understanding and reducing uncertainties 

by multi-scale experiments and modeling 
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Developing simulators for coupled THMC processes 

Evaluating key THMC processes with a large scale in situ 

experiment at 100 oC

Evaluating long-term alteration of bentonite under high 

temperature (200 oC) with exploratory generic models

Further testing THMC models with experiments at 200 oC, 

and improving understanding and reducing uncertainties 

by multi-scale experiments and modeling 

Roadmap to Study Long-term Stability of EBS
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Developing THMC Simulators

THC Processes

Mechanical Process

TOUGH2-FLAC3D  (Rutqvist, et al., 2011) 

sequentially couples the finite-difference 

geomechanical code FLAC3D with the finite-

volume, multiphase fluid flow code, TOUGH2 
(Pruess et al., 2012).

TOUGHREACT — coupled THC code 

TOUGH2-FLAC3D — coupled THM

TOUGHREACT-FLAC3D which combines TOUGHREACT and TOUGH2-FLAC3D has been 

developed and it is capable of conducting coupled THMC simulations.

TOUGHREACT

Fluid and heat transport and 

chemical reactions

T, Pl, Pg, Sl, Ci, Xi

Coupling module

TFLAC, PFLAC

FLAC3D

σ'

Coupling module

ϕ, k, Pc

Stress and strain analysis

TOUGHREACT is a numerical simulator for 

chemically reactive nonisothermal flows of 

multiphase fluids in porous and fractured media 
(Xu et al., 2014).

Great effort has been invested to develop 

and verify mechanical-chemical coupling 

schemes and constitutive relationships.

TOUGHREACT-FLAC3D is used for all the simulations in this presentation

TReactMech, a parallel coupled THMC simulator, has been developed and used 

for geothermal applications. It will be upgraded and used for modeling EBS.
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Developing simulators for coupled THMC processes 

Evaluating key THMC processes with a large scale in situ 

experiment at 100 oC

Evaluating long-term alteration of bentonite under high 

temperature (200 oC) with exploratory generic models

Further testing THMC models with experiments at 200 oC, 

and improving understanding and reducing uncertainties 

by multi-scale experiments and modeling 

Roadmap to Study Long-term Stability of EBS
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Evaluating Key THMC Processes with an in situ Test

Overview of the FEBEX in situ test 

The full-scale in situ test is located in Grimsel, 

Switzerland, heating started in 1997, as part of 

FEBEX (Full-scale Engineered Barrier 

Experiment). 

In 2002, Dismantling of Heater #1

In 2015, Dismantling of Heater #2

Extensive laboratory tests were carried 

out to characterize THMC properties of 

bentonite, concrete, steel liner and 

granite.

Personal 

communication with 

M.V. Villar
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THMC processes are implemented in the model and their relevance are 

evaluated by the goodness-of-fit between model and data

Event Date Time (year)

Commencement of heating 2/27/1997 0.0

Shutdown of Heat #1 2/2/2002 5.0

Sampling after heat #1 was 

dismantled 5/2/2002 5.3

Shutdown of heat #2 4/24/2015 18.1

Sampling after heat #2 was 

dismantled 7/3/2015 18.3

Available data:

•Temporal evolution of temperature, relative 

humidity, pressure and  stress

•Spatial distribution of water content, dry 

density, ion concentration in pore water and 

mineralogical composition at two snapshots: 

dismantling of heater #1 and #2
(ENRESA, 2000)

(Villar et al, 2018)

Evaluating Key THMC Processes with an in situ Test
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Thermal model: Heat convection and conduction

Flow model: Two-phase (gas and water) flow

Mechanical  model: 

Chemical model:  aqueous complexation, surface complexation, cation exchange 

and minerals dissolution/precipitation

State surface approach:

Permeability change :

Developing THMC model

 /)57.896.2(log  dk

Tkv Tto Thermal osmosis :

Heater
/Canister

X

Z

0 0.47 m 1.135 m 50 m

bentonite granite

0.125 m

1D axi-symmetrical model for “hot” sections

𝑒 = 𝐴 + 𝐵 ln −𝜎𝑚
′′  + 𝐶 ln 𝑠 + 𝑝𝑎 + 𝐷 ln −𝜎𝑚

′′   ln⁡(𝑠 + 𝑝𝑎) 

Evaluating Key THMC Processes with an in situ Test
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TH coupling has a moderate effect on thermal evolution in bentonite 

Evaluating Key THMC Processes with an in situ Test
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Key processes that affect hydrological behavior

• Two-phase (gas and liquid) Darcy type multiphase flow

• HM coupling (permeability and porosity changes as a result of swelling) has to be 

considered in the model

• The relevance of Non-Darcian flow is questionable
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Evaluating Key THMC Processes with an in situ Test
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Key processes that affect hydrological behavior

The effect of different constitutive relationships for saturated permeability : k=f(dry 

density) in base model vs k=f(effective stress) in Run A
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• The spatial distribution of permeability 

causes the differences between base 

model and Run A in Cl concentration 

profiles

• Chemical data provide relevant  piece of 

information for calibrating THM model

Evaluating Key THMC Processes with an in situ Test
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Key processes that affect hydrological behavior

Thermal osmosis might be relevant
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Evaluating Key THMC Processes with an in situ Test
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Key processes that affect hydrological behavior

An old but challenging issue for numerical modeling: Non-uniqueness of solution
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Understanding key chemical process: finding patterns while adequately 

accounting for uncertainties

• Data for solid phase are too scattered to 

show a clear spatial trend

• Data for exchangeable cations are 

problematic, but could be used with caution

• Ion concentrations in pore water were 

measured indirectly by aqueous extract 

method and need to be calibrated using 

models

Evaluating Key THMC Processes with an in situ Test

Distilled water

40 mL

10 g

Bentonite sample 

measured i

Chemical analysis 

of supernatent

Mixing for 

2 days

+

Separation by 

centrifugation

Caq for f = 400%

Cpore for i = ??

Measuring pore water chemistry 

using aqueous extract method

(Villar et al., 2017)
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Key chemical processes: chemical reactions are induced  by the EBS-

host rock interaction and thermal perturbation 

pH is buffered by surface protonation 

and affected by many chemical 

processes.
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Evaluating Key THMC Processes with an in situ Test
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Key chemical processes

Model shows dissolution of smectite and 

precipitation of illite at area near the heater. 

But the data of smectite content are too 

scattered to verify model results. 
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Evaluating Key THMC Processes with an in situ Test
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• The project evolved from feasibility study to process 

understanding

• In situ, 1:1 experiment was proved very useful in terms of 

engineering aspects, monitoring, sampling and modeling (Kober et 

al ., 2017)

• Bentonite (EBS) was performed as expected (Kober et al ., 2017) in 

term of dry density, swelling pressure and geochemical 

properties

• Long-term, international collaboration was very beneficial (Kober

et al ., 2017)

• Modeling capability was improved significantly, but there is 

room of improvement, especially in geochemical and coupled 

processes

Major concluding remarks from FEBEX project 

Evaluating Key THMC Processes with an in situ Test
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• The key processes needed to reproduce the THM data include thermal conduction 

and convection, multiphase flow, poro-elasticity, porosity and permeability changes 

due to swelling and thermal osmosis.

• Concentration profiles of cations were largely shaped by transport processes while 

their concentrations are also affected by mineral dissolution/precipitation and cation 

exchange; The concentration profile of pH, bicarbonate and sulfate were largely 

determined by chemical reactions.

• Measured mass fractions of smectite varied a great deal and were indistinguishable 

from the reference bentonite. The model results showed a small amount of illite 

precipitation and montmorillonite dissolution in the vicinity of the heater, which 

cannot be verified by the data. 

• The robustness of model would be increased if the model is tested against long-term 

data and various types of data. Short-term data and single type of data may fail to 

reveal deficiencies of the model. 

• Given the complexity of coupled THMC models, non-uniqueness is inevitable —

different models can achieve similar goodness-of-fit for the same data set. 

Summary of current modeling work

Evaluating Key THMC Processes with an in situ Test
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• Refining chemical model based  on the syntheses of all geochemical data: 

pore water concentration, mineral phase, gas concentrations

• Understanding geochemical evolution at interfacial areas: canister/bentonite, 

concrete/bentonite, granite/bentonite

Future modeling work

Wersin and Kober, 2017 

Evaluating Key THMC Processes with an in situ Test
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Developing simulators for coupled THMC processes 

Evaluating key THMC processes with a large scale in situ 

experiment at 100 oC

Studying long-term alteration of bentonite under high 

temperature (200 oC) with exploratory generic models

Further testing THMC model with experiments at 200 oC, 

and improving understanding and reducing uncertainties 

by multi-scale experiments and modeling 

Roadmap to Study Long-term Stability of EBS
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• What is the long-term alteration of clay minerals, e.g. illitization? Although 

illitization is extensively evidenced from geological systems, laboratory 

experiments, field tests and modeling studies show no conclusive evidence that 

illitization will occur in bentonite.

• If illitization does occur, what are the key factors and how does it affect swelling 

capacity of bentonite?

• What is the long-term hydrological and mechanical evolution of bentonite?

Motivation

Exploratory Generic Models for EBS (100 oC vs 200 oC) 

Key questions to answer

• Dual Purpose Canister disposal can lead to higher temperatures in the 

surrounding environment

• Thermal limit of 100 oC for small PWR canisters might be too limiting
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EBS Bentonite: Kunigel-VI or 

FEBEX bentonite

Clay formation : Opalinus Clay

Two cases for comparison: a “high T”
case and a ”low T” case
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point A
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• Chemical model: 12 primary species, 97 aqueous complexes, 17 minerals and 5 exchangeable cations

• Illitization was modeled as smectite dissolution and precipitation of illite: 

Smectite + 0.52H+ + 0.63AlO2
- + 0.6K = illite + 0.26H2O + 0.08Mg+2 + 0.33Na+ + 0.5SiO2(aq) 

• The reaction rate from 4.5e-14 to 2.4e-13 mol/g/s calibrated against data from Kinnekulle bentonite, Sweden 

(Push and Madsen, 1995) 

• MC coupling was formulated via an extended linear swelling model or Dual structural Expansive clay Model 

(BExM)

Model development

Exploratory Generic Models for EBS (100 oC vs 200 oC) 

(Zheng et al., 2015; 2017)
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Key findings (1) : illitization occurs, T plays key role and bentonite-host 

rock  interaction is important
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The temporal 

evolution of smectite 

volume fraction at 

points A, B, C, and D 

for Kunigel-VI 

bentonite. 

Exploratory Generic Models for EBS (100 oC vs 200 oC) 

In early times, dissolution of k-felspar supplies K for illitization; after about 3000 years, illitization in host rock 

stops and K is transported into bentonite which leads to very different illitization at points A and B  
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Key findings (2) :Type of bentonite matters and supply of K and Al is 

the key

The temporal 

evolution of 

smectite and K-

fledspar volume 

fraction at points A 

and B for Kunigel-

VI and FEBEX

bentonite. 
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Exploratory Generic Models for EBS (100 oC vs 200 oC) 
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Key findings (3) : Swelling stress decreases as a result of chemical 

changes and such decrease varies case by case
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Stress 

reduction by 

ion 

concentration 

Stress 

reduction by 

smectite 

dissolution 

Stress reduction 

by ion 

concentration 

Stress 

reduction by 

smectite 

dissolution

MPa % MPa % MPa % MPa %

Point A 0.07 7% 0.09 9% 0.006 0.1% 0.17 3.4%

Point B 0.08 8% 0.45 45% 0.06 1.1% 0.6 12%

The geochemically 

induced swelling stress 

for Kunigel and FEBEX 

bentonite at points A and 

B for “high T” scenario 

Exploratory Generic Models for EBS (100 oC vs 200 oC) 
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The importance of EBS-host rock interaction to migration of radionuclides

— an example

Exploratory Generic Models for EBS at 100 oC

(Argillite vs Granite) 
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Key features:

• Two models with same EBS (FEBEX 

bentonite) but different host rocks: argillite 

(based on Opalinus Clay) and granite 

(based on Beishan granite, China)

• U(VI) is released by dissolution of 

Schoepite after 1000 years

• U(VI) undergoes diffusion, aqueous 

complexation (e.g.  Ca2UO2(CO3)3) and 

adsorption via surface complexation in 

bentonite

Different host 

rocks

Different geochemical 

conditions in EBS

Different dissolution of Schoepite

and adsorption of U
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Developing simulators for coupled THMC processes 

Evaluating key THMC processes with FEBEX “in situ”
experiment at 100 oC

Studying long-term alteration of bentonite under high 

temperature (200 oC) with exploratory generic models

Further testing THMC model with experiments at 200 oC,  

and improving understanding and reducing uncertainties 

by multi-scale experiments and modeling 

Roadmap to Study Long-term Stability of EBS
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A planned collaboration project, HotBENT, led by NAGRA (Switzerland) , will 

conduct a joint experiment integrated with lab and modeling studies to evaluate 

buffer behavior at 150 oC to 200 oC.

Further Testing THMC Models with Field Test 

HotBENT

Participating organizations: 

NAGRA (Switzerland ), DOE(USA), NWMO (Canada), NUMO (Japan), RWM (UK), 

SÚRAO (Czech Republic)
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HotBENT modular design - example

Further Testing THMC Models with Field Test 

HotBENT
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Further Testing THMC Models with Field Test 

HotBENT

Timeline for the HotBENT experiment
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Further Testing THMC Models with Field Test 

HotBENT

Scoping calculation results - example

Liquid saturation evolution in vertical 

X-Z cross sections using Wyoming

bentonite properties in a 3-D TH 

model (Finsterle et al., 2017)
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Smectite and illite profile from a 1-D model 

similar to the model for FEBEX in situ test 

but with temperature boundary of 200 oC.

If HotBENT with 200 oC uses FEBEX 

bentonite, only moderate increase in 

illitization is expected.  
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Multi-scale Experiments and Modeling for Better 

Understanding 

• Studying the micro-scale structure of 

FEBEX bentonite

– Back-Scattered Electron Image (BSEI) of 

Bentonite – Cement Interface

– Bulk Bentonite Analyses using XRF, TGA 

and XRD

– Synchrotron X-ray Microtomography

Measurements

• U(VI) Sorption and diffusion experiments 

with FEBEX Bentonite

• Experimental studies of geochemical 

alteration of bentonite under higher 

temperature 

FEBEX – Bulk Bentonite

Post-reaction SEM images 

showing montmorillonite

foils displaying partially 

deteriorated edges from an 

isothermal 300 °C 

experiments (Cheshire et al., 

2014) 
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A cylindrical bentonite column with a 200 oC heater in the middle

Multi-scale Experiments and Modeling for Better 

Understanding 

Experimental Summary:

• Laboratory analog of 

HotBENT experiment

• 2 parallel columns (heated 

and control)

• Pre-molded clay column with 

embedded sensors

• Circular hydrological boundary 

condition

• Temperature and ERT 

sensors embedded

• Time lapse CT scans

6.5"

1
5
"
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X-ray compatible oedometer µXCT of pore development during hydration

Study chemical controls on smectite structure and swelling

Molecular predictions of swelling pressure

Multi-scale Experiments and Modeling for Better 

Understanding 
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Integration with Generic Disposal R&D

Field Experiments

Micro-structural analysis

Generic PA Modeling

• Fundamental understanding of coupled processes 

at multiple scales

• Building robust constitutive relationships for 

coupled processes

• Developing advanced modeling tools

• Constructing multi-physics coupled process models

• Testing models with large scale experiments

• Supplying generic PA models with reliable 

conceptual model and parameters

• Providing generic PA models with well-tested 

constitutive relationships

• Integrating process models into PA
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Questions?

Gunter, T. and E. Hardin,  Direct Disposal of DPCs  (Not for Release - Internal Use Only) energy.gov/ne28

Questions?
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