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What is the Engineered Barrier System (EBS)?

 EBS definition from the US Nuclear 

Regulatory Commission (10 CFR 

60.2)

– “Engineered barrier system means the 

waste packages and the underground 

facility”

 EBS definition from to the 

NEA/OECD EBS State-Of-The-Art 

Report (2003):

– “The “engineered barrier system” 

represents the man-made, engineered 

materials placed within a repository, 

including the waste form, waste 

canisters, buffer materials, backfill and 

seals.”

Generic EBS concept with bentonite barrier showing 

a canister breaching scenario (Jerden et al. 2019) 

FMDM = Fuel Matrix Degradation Model
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FEBEX Full Scale Heater Test Experiment

• Conducted by ENRESA under auspices of the EU at the Grimsel Test Site (GTS) in Switzerland

• Bentonite was compacted into blocks at 1650 kg/m3 dry density and placed in a radial 

arrangement surrounding 2 heaters

• Heaters operated at a maximum of 100 °C – Heater 1 operated for 5 years; heater 2 operated 

for 18 years

• FEBEX-DP samples were obtained from heater 2 dismantling in 2015 after 18 years of heating

• Unique opportunity for long-term full-scale heater test and sample / data availability

Source: Huertas et al. (2000)
cold-zone heated-zones

Compacted 

bentonite blocks 

(1)(2)
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Goals

• Investigate the effects of temperature on bentonite clay 

barrier interactions: clay phase change / degradation, smectite 

swelling, and structure / composition

• Investigate the effects of changing chemical conditions and 

temperatures on uranium(VI) sorption and diffusion.

• Reduce the uncertainty in actinide sorption / diffusion sub-

models that are part of performance assessment (PA) models for 

waste repositories.
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International URL Portfolio in a Nutshell
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Repository Phases and Relevant Processes
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Understanding radionuclide adsorption to clay under realistic 
waste-disposal scenarios

• Heat-generating waste canisters 

increase temperatures of 

surrounding engineered barriers

• Groundwater Intrusion from 

surrounding host rock

• Variable saturation across clay barrier

• Changes in pore water chemistry

• Changes in accessory mineral 

assemblage (e.g., calcite, pyrite)

• Changes in clay structure/composition 

(e.g., illitization, ion exchange)

• Changes in aqueous radionuclide 

(RN) speciation

• Changes in mineral sorption capacity

• Changes in swelling behavior
Host 

Rock

Waste

Clay Barrier
Steel  

Canister

Heat

Groundwater
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FEBEX-DP Experiment:  Sampled Sections

FEBEX-DP

– Section 49 samples 

(near longitudinal 

central area of heater)

– Bentonite samples from 

close to the heater 

towards the outer parts 

of the barrier  

– X-Ray Fluorescence (XRF) 

bulk composition, X-ray CT-

scan, µ-XRF, SEM-EDS, X-

Ray Diffraction (XRD), 

Thermogravimetric analysis 

(TGA)

García-Siñeriz et al., 2016



Carlos F. Jové Colón   Thermal Implications on Transport in Bentonite    (NWTRB April 2019) energy.gov/ne10

FEBEX-DP Bulk Bentonite Samples: X-ray Fluorescence (XRF)

 Mg enrichment towards the heater surface – zones of increasing dry out conditions

 Bulk MgO content far from heater nominally within the bounds of other lab analyses

 Overall, CaO content is relatively variable close to the heater surface

 Mg enrichment(?):

 Enhanced Mg content due to elevated temperatures?

 SEM-EDS didn’t show newly-formed Mg-bearing phases within the clay matrix
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FEBEX-DP Bulk Bentonite Samples: X-ray Fluorescence (XRF)

 Large uncertainties on Na2O content – Issues with detection limits

 Slightly enriched in Fe2O3 relative to reference bentonite compositions

 Fe2O3, SiO2, & K2O fall within the range of reference bentonite compositions
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FEBEX-DP Experiment:  Sampled Sections cont.

Section 49

Sandia Samples

XRD Analyses 

samples close to 

heater surface 
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FEBEX-DP:  Bentonite X-ray Diffraction (XRD)

 Smectite Clay Structural 

Characterization:

 Comparison of XRD spectra across sampled 

domains

 Evaluate d(001) spacings as a function of 

distance from heater surface

 Smectite d(001) spacings close to the heater 

surface showed most differences relative to 

base case FEBEX bentonite

 d(001) spacings from glycolated samples 

(max. clay expansion) are similar for samples 

close and far from heater surface

 However, consistent d(001) spacing 

deviations are observed for dried samples 

 Overall, XRD profiles are similar to those 

reported by others in the FEBEX-DP project

Section 49

Heater Surface 

Section 49

Heater Surface 
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FEBEX-DP:  Bentonite X-ray Diffraction (XRD)

• No apparent effect of elevated temperatures on d(001) spacing for 

glycolated clay samples

• Slight decrease in swelling extent for samples in contact or close to the 

heater surface

• Prolonged exposure of bentonite to T = 95 – 100 ºC causes some 

changes in swelling

– Correlate with compositional changes in clay close to heater surface

Heater

Heater
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FEBEX-DP: Shotcrete – Bentonite Interface Core Extraction

 Shotcrete/bentonite 
interface sampling

 Characterization studies 
cement/bentonite 
interactions

 Phase  identification (SEM-
EDS, XRD, µ-XRF)

 X-ray CT Scan: micron-scale 
structures

Over-coring

Technique

Mäder et al. (2016)

Shotcrete Bent.

C. F. Jove Colon (SNL)

FEBEX-DP Sampling Plan
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Bentonite – Concrete Interface Characterization (X-ray CT Scan)

 Main Features:

– Occurrence of microcracks and pore spaces –

connected in many cases

– “Craquelure” or “chickenwire” microcrack 

pattern (desiccation) 

– Some embedded granular material in bentonite 

matrix with radiating cracks

– Heterogeneous microcrack spatial distribution 

localized regions with no cracks

 Crack – Pore pathways:

Bentonite:

– Continuous and discontinuous pore-microcrack 

networks (2D & 3D)

– Large pores tend to be connected to microcracks

Shotcrete:

– Bentonite: Large pores tend to be connected to 

microcracks

– No or little microcracks 

– Isolated pores except at the interface
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Shotcrete - Bentonite Interface Characterization 
(µ-XRF)

• Main Features

– Compositional map at thin 

section (mm) scale –

Scanning at the µm scale

– Sharp compositional 

changes at the bentonite-

shotcrete interface

– Consistent spatial 

correlation among various 

elements across interface

• Compositional Gradients

– Depletion on shotcrete side of 

the interface  Leaching?

– Bentonite seems compositional 

homogeneous at the interface

– Limited reaction front?

Jové Colón et al. (2017)
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analcime

Analcime (Bentonite only)

Authigenic zeolite produced from clinoptilolite / glass in bentonite 
interaction experiments

Wairakite-rich zeolite 

(Opalinus clay + Bentonite)

analcime-wairakite (rich)

Analcime – Wairakite Analyses – Solid Solution

Neuhoff et al. 2004

Iijima & Hay 1968

Green River, WY

EMPA by K. Norskog & F. Caporuscio (LANL)

Glass in Bentonite Alteration Sequence

Glass in Bent Clinoptilolite  Analcime (Wairakite)

Aoki et al. (1980)

Steiner (1955)

S
i/

A
l

Na/(Na + Ca)

• Bentonite Alteration and Zeolite Stability:

– Glass alteration in bentonite  high Si

– Formation of analcime – wairakite zeolites

– Wairakite – analcime solid solution  expands 

zeolite stability 

– Little or no illite formation detected

• High Si activities prevents illite stability?

Jové Colón et al. (2017)
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Bentonite – Steel Interaction Experiments

“inner oxide”

“outer 

oxide”

trevorite

hematite

chromite

iron

Fe+2

• Experiment

– T = 300ºC; STRIPA brine

– Wyoming Bentonite

– 316 Stainless Steel (SS), 304SS, low-C steel

• Results

– Fe-Saponite growth perpendicular to metal substrate

– S is generated from pyrite degradation in bentonite

– Concurrent surface sulfide precipitation with Fe-saponite

316L SS

T= 295°C

P= 79.9 bars

log aFe++ = -6

log aCr+++ = -8

log aNi++ = -8

Fe-saponite

Cheshire et al. (2014)



Carlos F. Jové Colón   Thermal Implications on Transport in Bentonite    (NWTRB April 2019) energy.gov/ne20

U(VI) adsorption experiments: FEBEX-DP clay samples that experienced 
different temperature and moisture regimes

T, porewater Ca, Mg, Na, K

water content

• 50 cm from axis (Section 48)
• T= 95°C
• Moisture Content18%

• 50 cm from axis (Section 59)
• T= 20°C
• Moisture Content  25%

Cold Zone:

Composite samples were created from 3 replicate blocks from 
each location, air-dried and sieved to < 63 mm.

Original FEBEX Bentonite Mineral Composition*
92 % smectite (illite-smetite mixed layer, with ~11% illite layers)
2% plagioclase
2% quartz
2% cristobalite
<1% potassium feldspar, calcite, trydimite, Fe- and Al-oxides

*Fernández et al. (2004)

Heated Zone:

Moisture content and temperature from Villar et al. (2018)
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Lower U(VI) Sorption onto Heated Bentonite
< 63 mm fraction, bentonite composite samples, 0.5 g/L bentonite

Up to 10% lower U(VI) adsorption on heated bentonite.
• Adsorption is lower in presence of 2 mM Ca compared to 0.1 mM Ca.
• Adsorption decreases as pH and DIC increase.

Possible reasons for lower U(VI) adsorption:
• aqueous U(VI) speciation
• relative fraction of clay (montmorillonite) mineral phase
• structure/composition of clay mineral fraction
• structure/composition of accessory mineral fraction (e.g., Fe-oxides)
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U(VI) adsorption onto purified bentonite
< 2 mm fraction, carbonate minerals removed

Lower U(VI) adsorption on 95°C heated bentonite persists after purification.
• Consistently lower U(VI) adsorption onto 95°C heated sample in presence of 0.1 mM Ca
• Smaller difference in presence of 2 mM Ca
• As with bulk samples, U(VI) adsorption is lower at higher Ca concentration
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• International collaborations on URL activities and partners provide 

unique opportunities for data and sample collection from heater tests

• Characterization and sorption studies of post mortem FEBEX-DP 

bentonite samples indicate:

– Mg-enrichment in clay observed in bentonite close to the heated surface 

– Slight decrease in bentonite swelling also observed close to the heated 

surface

– Lower U(VI) sorption for samples subjected to 95ºC relative to those 

exposed to ambient temperatures

– Bentonite-cement interactions and cement leaching effects appear largely 

constrained to the interface

• Bentonite-metal interfacial interactions at elevated temperatures:

– Produces zeolites (analcime) and sulfide phases

– Fe-saponite growth perpendicular to the metal substrate

– Little or no illite forms in the experiments and heater test 

Summary
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Sandia National Laboratories is a multimission laboratory managed and 

operated by National Technology and Engineering Solutions of Sandia, LLC, a 

wholly owned subsidiary of Honeywell International Inc., for the U.S. 

Department of Energy’s National Nuclear Security Administration under 

contract DE-NA0003525.
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Questions?
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