

Spent Fuel and Waste Science and Technology (SFWST)





High Burnup Spent Fuel Data Project & Thermal Modeling and Analysis NWTRB Meeting Albuquerque, NM October 24, 2018

**Brady Hanson** 

PNNL-SA-13859

# Outline

- Loading of the TN-32B "Demo Cask"
- Thermal modeling
- Temperature measurements and comparison to models
- Gas samples
- Future plans
  - Demo cask and sister rods
  - Thermal modeling
  - Drying studies

# Low Burnup Demonstration

- CASTOR V/21 thermal tests<sup>1</sup>
  - Cask loaded Sept. 1985
  - Fuel burnups 29.8 35.7 GWd/MTU
  - Cooling times 26-46 months
  - Cask heat load 28.4 kW
  - Assembly heat load 1.00-1.83 kW
  - Estimated Peak Clad Temperature (PCT) under vacuum 424°C
- Low burnup "Demo"<sup>2</sup>
  - Cask opened Sept 1999
  - 14 year storage period
  - 12 rods pulled for examination
  - 3 rods sent to ANL for detailed examination and testing



Photo courtesy of Idaho National Laboratory

- The Castor-V/21 PWR Spent-Fuel Storage Cask: Testing and Analysis, EPRI NP-4887, November 1986.
- 2 Dry Cask Storage Characterization Project, EPRI 1002882, September 2002
- "Based on the 1999 examination and testing results, there was no evidence of cask, shielding, or fuel rod degradation during long-term (14 years) storage that would affect cask performance or fuel integrity."<sup>2</sup>

# High Burnup Demonstration

- High burnup  $\geq$  45 GWd/MTU
- Typical characteristics
  - Increased fission gas release
  - Increased cladding oxidation
  - Increased hydrogen content
    - Hydrides
- NRC limits burnup to 62 GWd/MTU peak rod-average burnup
- Practical limits
  - 5 w/o <sup>235</sup>U enrichment
  - US cycle lengths of 18 or 24 months
- Potential for hydride reorientation and cladding creep if hoop stress and temperatures are large enough
- Confirm technical basis with high burnup fuel under real dry storage conditions

| GC-859 Reported Average Assembly-Average |
|------------------------------------------|
| Discharge Burnup                         |

|      | Number o | f Assemblies | Average burnu | ıp (GWd/MTU) |
|------|----------|--------------|---------------|--------------|
| Year | BWR      | PWR          | BWR           | PWR          |
| 2000 | 4603     | 3122         | 38.3          | 44.9         |
| 2001 | 3617     | 2896         | 40.1          | 45.5         |
| 2002 | 4148     | 3765         | 40.2          | 46.0         |
| 2003 | 4584     | 3585         | 39.5          | 46.4         |
| 2004 | 4431     | 2669         | 42.8          | 46.9         |
| 2005 | 4075     | 3704         | 42.8          | 46.6         |
| 2006 | 3995     | 3516         | 43.1          | 46.9         |
| 2007 | 4574     | 2782         | 43.3          | 46.9         |
| 2008 | 4480     | 3550         | 43.1          | 47.2         |
| 2009 | 4395     | 3677         | 45.1          | 46.5         |
| 2010 | 4617     | 2856         | 44.3          | 46.8         |
| 2011 | 4105     | 3663         | 45.1          | 46.6         |
| 2012 | 4476     | 3759         | 45.0          | 44.5         |
| 2013 | 3246     | 1534         | 44.1          | 45.4         |

U.S. Energy Information Administration, Form GC-859, "Nuclear Fuel Data Survey" (2013). <u>https://www.eia.gov/nuclear/spent\_fuel/ussnftab3.cfm</u>



Micrographs courtesy of Mike Billone, ANL. They are illustrative only, not from sister rods.

# Final Fuel Selection – Loading Pattern

- DOE contract with EPRI awarded April 2013
- Dominion Energy
  - 4 cladding types
- TN-32 B cask
  - Loaded November 2017
  - Burnups 50 55.5 GWd/MTU
  - Cooling time 5 30 yr
  - Assembly heat load 0.574 1.142 kW
- Iterations on fuel assemblies to be loaded
  - Maximize decay heat
  - Attempt to approach 400°C
    PCT
  - Can't exceed thermal limits on other materials

|           |            | 1                | 2 (TC Lance)     | 3               |                    | 4                |         |                     |  |     |
|-----------|------------|------------------|------------------|-----------------|--------------------|------------------|---------|---------------------|--|-----|
|           |            | 6 T 0            | 3K7              | 3 T6            |                    | 6F2              |         |                     |  |     |
|           |            | Zirlo, 54.2 GWd  | M5, 53.4 GWd     | Zirlo, 54.3 GWd |                    | Zirlo, 51.9 GWd  |         |                     |  |     |
|           |            | 4.25%, 3cy, 11yr | 4.55%, 3cy, 8yr  | 4.25%, 3cy, 1   | 1yr                | 4.25%, 3c        | y, 13yr |                     |  |     |
|           |            | 912.2 W          | 978.2 W          | 914.4 W         |                    | 799.5            | w       | DRAIN PORT          |  |     |
| 5         |            | 6 (TC Lance)     | 7                | 8               |                    | 9                |         | 10                  |  |     |
| :         | 3F6        | 30A              | 22B              | 20B             |                    | 5K6              | 5       | 5D5                 |  |     |
| Zirlo, 5  | 52.1 GWd   | M5, 52.0 GWd     | M5, 51.2 GWd     | M5, 50.5 GV     | Vd                 | M5, 53.3         | GWd     | Zirlo, 55.5 GWd     |  |     |
| 4.25%,    | 3cy, 13yr  | 4.55%, 3cy, 6yr  | 4.55%, 3cy, 5 yr | 4.55%, 3cy, 5   | i yr               | 4.55%, 30        | :y, 8yr | 4.2%, 3cy, 17yr     |  |     |
| 80        | 0.9 W      | 1008.6 W         | 1142.4 W         | 1121.2 W        |                    | 975.1            | w       | 814.5 W             |  |     |
| 11 Vent P | Port       | 12               | 13               | 14 (TC Lance)   |                    | 15               |         | 16                  |  |     |
| 6         | 5D9        | 28B              | F40              | 57A             |                    | 30E              | 3       | 3K4                 |  |     |
| Zirlo, 5  | 54.6 GWd   | M5, 51.0 GWd     | Zirc-4, 50.6 GWd | M5, 52.2 GV     | Vd                 | M5,50.6          | GWd     | M5, 51.8 GWd        |  |     |
| 4.2%;     | 3cy, 17yr  | 4.55%, 3cy, 5 yr | 3.59%, 3cy, 30yr | 4.55%, 3cy, 6   | 6yr                | 4.55%, 30        | y, 5 yr | 4.55%, 3cy, 8 yr    |  |     |
| 80:       | 2.6 W      | 1135.0 W         | 573.8 W          | 1037.0 W        |                    | 1124.8           | w       | 941.3 W             |  |     |
| 17        |            | 18               | 19 (TC Lance)    | 20              |                    | 21               |         | 21                  |  | 22  |
| 5         | 5K7        | 50B              | 3U9              | 0A4*            |                    | 15B              |         | 15B                 |  | 6K4 |
| M5,5      | 3.3 GWd    | M5, 50.9 GWd     | Zirlo, 53.1 GWd  | Low-Sn Zy-4, 50 | ow-Sn Zy-4, 50 GWd |                  | GWd     | M5, 51.9 GWd        |  |     |
| 4.55%     | , 3cy, 8yr | 4.55%, 3cy, 5 yr | 4.45%, 3cy, 10yr | 4.0%, 2cy, 22   | 2yr                | 4.55%, 3cy, 5 yr |         | 4.55%, 3cy, 8 yr    |  |     |
| 96        | 1.7 W      | 1131.1 W         | 920.2 W          | 646.2 W         |                    | 1135.8 W         |         | 941.2 W             |  |     |
| 23        |            | 24 (TC Lance)    | 25               | 26              | 26                 |                  |         | 28 (TC Lance)       |  |     |
| 3         | 3 T2       | 3U4              | 56B              | 54B             |                    | 6V0              | )       | 3U6                 |  |     |
| Zirlo, 5  | 55.1 GWd   | Zirlo, 52.9 GWd  | M5, 51.0 GWd     | M5, 51.3 GV     | Vd                 | d M5, 53.5 GWd   |         | Zirlo, 53.0 GWd     |  |     |
| 4.25%,    | 3cy, 11yr  | 4.45%, 3cy, 10yr | 4.55%, 3cy, 5 yr | 4.55%, 3cy, 5   | yr 4.4%, 3cy       |                  | ,8yrs   | 4.45%, 3cy, 10yr    |  |     |
| 934       | 4.7 W      | 914.2 W          | 1133.7 W         | 1136.3 W        | 1136.3 W 988.2 W   |                  | 916.9 W |                     |  |     |
|           |            | 29               | 30               | 31 (TC Lance)   |                    | 32               |         |                     |  |     |
|           |            | 4V4              | 5K1              | 5 T9            |                    | 4F1              |         | High Priority Assys |  |     |
|           |            | M5, 51.2 GWd     | M5, 53.0 GWd     | Zirlo, 54.9 G   | ٧d                 | Zirlo, 52.       | 3 GWd   |                     |  |     |
|           |            | 4.40%, 3cy, 8yr  | 4.55%, 3cy, 8yr  | 4.25%, 3cy, 1   | 1yr                | 4.25%, 3c        | y, 13yr |                     |  |     |
|           |            | 914.2 W          | 968.0 W          | 927.7 W         |                    | 804.3            | W       |                     |  |     |
| _         |            | KEY              |                  |                 |                    |                  |         | Burnup              |  |     |
|           | Loc        | cation (Thermo   | couple)          |                 | Cla                | ad Type          | Qty     | Range               |  |     |
|           | A          | ssy ID (high p   | riority)         |                 |                    | Zr-4             | 1       | 50.6                |  |     |
|           |            | Cladding . B     | SU I             |                 | low                | tin Zr-4         | 1       | 50                  |  |     |
|           | En         | r. #cvcles. Yrs  | cooled           |                 |                    | Zirlo            | 12      | 51.9 - 55.5         |  |     |
|           |            | Decay Heatloa    | ding             |                 |                    | M5               | 18      | 50.5 - 53.5         |  |     |

# **Thermocouple Lances**

- 63 thermocouples
  - 7 lances each with 9 axially spaced thermocouples
  - Gives both radial and axial profiles within the cask
- Lances installed into assembly guide tube locations
- Jacking plate and double metallic o-ring for confinement









Thermocouple radial locations

# Cask Receipt





# Cask Loading and Funnel Guide Installation



# Cask Removal from Spent Fuel Pool



# Placement in Decontamination Bay



# Loading Timeline

| Activity                           | Date  | Time | Duration  |
|------------------------------------|-------|------|-----------|
| Load 1 <sup>st</sup> assembly      | 11/14 | 1122 |           |
| Load last assembly                 | 11/14 | 1530 | 4.1 hrs   |
| Remove cask from spent fuel pool   | 11/14 | 2040 |           |
| Begin draining                     | 11/15 | 1722 |           |
| Complete draining                  | 11/15 | 1805 | 0.7 hrs   |
| Water in cask                      |       |      | 22.7 hrs  |
| Blowdowns to remove residual water |       |      | 4.5 hrs   |
| Begin drying                       | 11/16 | 0035 |           |
| Drying duration                    |       |      | 8.4 hrs   |
| Begin 1 <sup>st</sup> He backfill  | 11/16 | 0900 |           |
| Complete He backfill               | 11/16 | 1024 | 1.4 hrs   |
| Final pressure check               | 11/28 | 1155 |           |
| Thermal soak                       |       |      | 12.2 days |
| Leave decon bay                    | 11/30 | 909  |           |
| Set cask on pad                    | 11/30 | 1124 |           |

Table courtesy of Keith Waldrop, EPRI project manager

# Gas Sampling





Vent port with quick-connect



- 3 Samples taken
  - 1<sup>st</sup> ~5 hours after He backfill
  - 2<sup>nd</sup> ~5 days after sample 1
  - 3<sup>rd</sup> ~7 days after sample 2
- 3 containers each time
- First vessel was a purge to capture air contamination from coupling joint
- Second vessel analyzed at North Anna for <sup>85</sup>Kr, O<sub>2</sub>, H<sub>2</sub>, and H<sub>2</sub>O
- Third vessel sent to SNL for same analyses plus CH<sub>4</sub>

# Cask External Surface Temperature





# Cask Transferred to North Anna ISFSI Pad



# **Evolution of Thermal Modeling Results**

| Peak Cladding Temperature |     |                 |     |     |     |  |  |  |  |  |
|---------------------------|-----|-----------------|-----|-----|-----|--|--|--|--|--|
|                           | 270 | 270 284 279 267 |     |     |     |  |  |  |  |  |
| 267                       | 297 | 312             | 312 | 295 | 268 |  |  |  |  |  |
| 275                       | 311 | 300             | 315 | 312 | 283 |  |  |  |  |  |
| 283                       | 311 | 307             | 301 | 313 | 284 |  |  |  |  |  |
| 271                       | 291 | 312             | 312 | 296 | 272 |  |  |  |  |  |
|                           | 273 | 284             | 281 | 268 |     |  |  |  |  |  |

| Minimum Cladding Temperature |     |     |     |     |     |  |  |  |  |
|------------------------------|-----|-----|-----|-----|-----|--|--|--|--|
|                              | 156 |     |     |     |     |  |  |  |  |
| 156                          | 156 | 157 | 157 | 157 | 156 |  |  |  |  |
| 156                          | 157 | 158 | 157 | 156 | 156 |  |  |  |  |
| 156                          | 157 | 156 | 157 | 156 | 156 |  |  |  |  |
| 156                          | 157 | 157 | 157 | 157 | 156 |  |  |  |  |
|                              | 158 | 156 | 155 | 156 |     |  |  |  |  |

FSAR dimensions and properties;  $T_{amb} = 100^{\circ}F$ ; Decay heat=36.8 kW

| Peak Cladding Temperature |     |     |     |     |     |   |  |  |  |
|---------------------------|-----|-----|-----|-----|-----|---|--|--|--|
| _                         | 238 | 247 | 244 | 234 |     |   |  |  |  |
| 234                       | 257 | 269 | 268 | 256 | 235 |   |  |  |  |
| 241                       | 268 | 255 | 271 | 269 | 246 |   |  |  |  |
| 247                       | 268 | 268 | 260 | 269 | 247 |   |  |  |  |
| 238                       | 255 | 269 | 269 | 257 | 238 |   |  |  |  |
|                           | 239 | 248 | 246 | 235 |     | • |  |  |  |

| Minim | num Cladd | ing Tem | perature |
|-------|-----------|---------|----------|
|       |           |         |          |

|     | 138 | 138 | 138 | 138 |     |
|-----|-----|-----|-----|-----|-----|
| 138 | 138 | 138 | 138 | 138 | 138 |
| 138 | 138 | 139 | 138 | 138 | 138 |
| 138 | 138 | 139 | 139 | 138 | 138 |
| 138 | 139 | 138 | 138 | 138 | 138 |
|     | 139 | 138 | 138 | 138 |     |

## FSAR dimensions and properties; $T_{amb} = 100^{\circ}F$ ; Decay heat=30.6 kW

| Peak Cladding Temperature                                                    |                                          |           |     |     |     | F   | Peak C | ladding | g Temp | peratur | е                                                                           |     |     |
|------------------------------------------------------------------------------|------------------------------------------|-----------|-----|-----|-----|-----|--------|---------|--------|---------|-----------------------------------------------------------------------------|-----|-----|
|                                                                              |                                          | 226       | 235 | 232 | 222 |     |        |         | 211    | 234     | 231                                                                         | 206 |     |
|                                                                              | 222                                      | 244       | 255 | 255 | 243 | 222 |        | 214     | 241    | 258     | 257                                                                         | 240 | 215 |
| COBRA-SFS                                                                    | OBRA-SES 229 255 245 258 255 234 STAR-CO | STAR-CCM+ | 230 | 261 | 245 | 263 | 262    | 237     |        |         |                                                                             |     |     |
|                                                                              | 234                                      | 255       | 255 | 247 | 255 | 234 |        | 237     | 262    | 260     | Ing Temperature2312062312062572402152632622372482622372582412202322060.5 kW |     |     |
|                                                                              | <b>226 242 256 255 244 226</b>           | 221       | 238 | 258 | 258 | 241 | 220    |         |        |         |                                                                             |     |     |
|                                                                              |                                          | 226       | 235 | 233 | 223 |     |        | -       | 212    | 234     | 232                                                                         | 206 |     |
| FSAR dimensions and properties; $T_{amb} = 75^{\circ}F$ ; Decay heat=30.5 kW |                                          |           |     |     |     |     |        |         |        |         |                                                                             |     |     |

# Measured Temperatures in Hottest Assembly



TC-1 is thermocouple near bottom TC-9 is thermocouple near top

# Measured Temperatures at 9" Above Cask Bottom



# Comparison of Models to Measured at Steady Sate



*Thermal Modeling of TN-32B CASK for High Burnup Spent Fuel Data Project,* JA Fort, DJ Richmond, JM Cuta, and SR Suffield. PNNL-24549 Rev 2. 9/2018



Surface temperature boundary condition

# Model Sensitivity Runs

| Condition                         | PCT Difference<br>from Baseline (°C) |
|-----------------------------------|--------------------------------------|
| Increase Basket Emissivity to 0.8 | -2                                   |
| Closed rail-shell gaps            | -2                                   |
| 99% Decay Heat                    | -2                                   |
| 98% Decay Heat                    | -3                                   |
| 95% Decay Heat                    | -8                                   |
| 90% Decay Heat                    | -16                                  |
| Basket-Rail Gap 0.15 in.          | -5                                   |
| Basket-Rail Gap 0.10 in.          | -12                                  |
| Basket-Rail Gap 0.05 in.          | -20                                  |

Temperatures are <u>biased</u> high because of the basket-rail gap provided by the FSAR or conservative decay heat calculations

Temperatures are <u>uncertain</u> because of the unknown axial and circumferential gap variability

*Thermal Modeling of TN-32B CASK for High Burnup Spent Fuel Data Project,* JA Fort, DJ Richmond, JM Cuta, and SR Suffield. PNNL-24549 Rev 2. 9/2018



# Adjusting Basket-Rail Gap Size



Courtesy David Richmond and Jim Fort, PNNL



Thermal Modeling of TN-32B CASK for High Burnup Spent Fuel Data Project,

JA Fort, DJ Richmond, JM Cuta, and SR Suffield. PNNL-24549 Rev 2. 9/2018

energy.gov/ne

 

# Phase II Round Robin Summary





 Steady state PCTs from all models and measurements significantly lower than the design licensing basis:

| Parameter              | FSAR    | LAR      | Best-<br>Estimate | HBU Cask<br>Measurements |
|------------------------|---------|----------|-------------------|--------------------------|
| PCT (model vs data)    | 348°C   | 318°C    | 254-288°C         | 229°C                    |
| Heat Loadouts          | 36.96kW | 32.934kW | 30.456kW          | 30.456kW                 |
| Ambient<br>Temperature | 100°F   | 93.5°F   | 75°F              | 75°F                     |
| Design Specifics       | Gaps    | Gaps     | Gaps              | No Gaps?                 |

Slide courtesy of Al Csontos, Co-chair of EPRI ESCP Thermal Subcommittee

# Gas Sampling

- IRP study at University of South Carolina showed no detectable water after vacuum drying
  - Except "failed" rod had ~5 mL
- Moisture content still being evaluated
  - Not easy to relate measurement from sample container (ppm) to cask conditions (grams)
  - North Anna equipment uses Los Gatos Water Vapor Isotope Analyzer (WVIA)
    - Based on laser absorption technology
    - Recently completed a calibration run using known moisture content gases
  - Sandia has used different techniques
    - Calibration run to be performed soon



Moisture analysis equipment

# Summary

- Models can accurately predict cask and component temperatures when accurate inputs are provided
- Bias for high predicted temperatures comes from using known conservatisms
  - Decay heat
  - Ambient temperature
  - Conduction gaps in FSAR/CoC (e.g., basket/rail gaps)
- "Gaps" important for conductive systems, including horizontal
  - Gravity and mass will close gaps at the bottom of the canister
- DOE, EPRI, NRC, and International groups under ESCP Thermal Subcommittee working to understand conservatisms/bias and address uncertainties
- More accurate temperatures become important when close to a thermal limit or threshold where degradation may occur
  - Hoop stress appears to be much more important than temperatures for the range expected in the U.S.
- Quantification of residual water after drying still to be determined

# **Future Work**

- Complete Phase 1 Round Robin thermal analysis (Sam Durbin)
- EPRI to release Phase 2 Round Robin report
- Model Demo cask on the ISFSI pad and compare to data-
- Perform transient analyses and compare to demo drying data
- Perform Phase 3 testing for horizontal configuration (Sam Durbin)
- Determine need for testing of other configurations, fuel types, and scale
- SNL to perform calibrations and quantify water in gas samples
- SFWST is supporting a comprehensive analysis being led by ASTM International C26.13 to determine consequences of residual water after drying
- SFWST has issued a call for a follow-on IRP to examine effects of temperature gradients, scale, and other variables
- SFWST is conducting small scale tests to relate the results of gas moisture analyses to internal conditions

# Continuation of the "Demo"

- Cask remains on the North Anna ISFSI and data is being recorded hourly and collected quarterly
- No additional gas sampling of the Demo cask is planned until end of the storage period prior to transportation
- SFWST and EPRI looking into sampling of other systems
- DOE is exploring options for where to ship the Demo cask after ~10 years
- Sister rod testing is expected to bound behavior of rods in the Demo cask

# Questions?

# Clean. Reliable. Nuclear.