

Nuclear Energy

High Burnup Fuel, Associated Data Gaps, and Integrated Approach for Addressing the Gaps

Dr. Brady D. Hanson Pacific Northwest National Laboratory DOE Office of Nuclear Energy, Used Nuclear Fuel Disposition R&D Campaign

NUCLEAR WASTE TECHNICAL REVIEW BOARD Knoxville, February 17, 2016

What is High Burnup Fuel?

Nuclear Energy

By definition, burnup \geq 45 GWd/MTU

- Longer time in reactor or higher power
 - More fissions, higher radionuclide content, higher decay heat
- Based on changes to the fuel and cladding
 - Continuum, not step changes

High Burnup Structure (HBS)

- Initiates with pellet-average burnup ~35-40 GWd/MTU
 - Increases with burnup from 0 to ~200 μ m
- Grains subdivide ~10 μ m \rightarrow 0.1-0.3 μ m
- Up to 20% closed porosity

Increased fission gas release

Example of HBS in MOX fuel⁽¹⁾

Fission Gas Release in US PWRs⁽²⁾

Cladding Oxidation

Nuclear Energy

NRC limits oxide thickness to <100µm Newer alloys oxidize less

M5®(5)

Hydrogen Content

M5^{®(5)}

High Burnup Fuel Inventory

Nuclear Energy

Watts Barr Unit 1 Cycles 1-10 Discharge Burnup⁽⁷⁾

NRC limit of 62 GWd/MTU peak rod-average burnup

Limits to much higher burnup:

- 5 w/o ²³⁵U enrichment
- Cycle length (18, 24 months in US)

Gap Prioritization - 2012

Gap	Priority	Gap	Priority	
Thermal Profiles	1	Neutron poisons – Thermal aging	7	
Stress Profiles	1	Moderator Exclusion	8	
Monitoring – External	2	Cladding – Delayed Hydride Cracking	9	
Welded canister – Atmospheric corrosion	2	Examination of the fuel at the INL	10	
Fuel Transfer Options	3	Cladding – Creep	11	
Monitoring – Internal	4	Fuel Assembly Hardware – SCC	11	
Welded canister – Aqueous corrosion	5	Neutron poisons – Embrittlement	11	
Bolted casks – Fatigue of seals & bolts	5	Cladding – Annealing of radiation damage	12	
Bolted casks – Atmospheric corrosion	5	Cladding – Oxidation	13	
Bolted casks – Aqueous corrosion	5	Neutron poisons – Creep	13	
Drying Issues	6	Neutron poisons – Corrosion	13	
Burnup Credit	7	Overpack – Freeze-thaw	14	
Cladding – Hydride reorientation	7	Overpack – Corrosion of embedded steel	14	
Imminent need Immediate to facilitate demonstration early s Near-term High or Very High	tart	Long-term High Near-term Medium or Medium High Long-term Medium	6	

Gap Prioritization – 2014

Gap ^a	Updated Prioritization	Original Prioritization	Basis for Change in Scoring/Prioritization				
Thermal Profiles	1	1	N/A				
Stress Profiles	1	1	N/A				
Monitoring - External	2	2	N/A				
Welded Canister – Atmospheric Corrosion	2	2	N/A				
Drying Issues	3	6	N/A				
Monitoring - Internal	4	4	No longer a pre-requisite to the HBU Confirmatory Demo				
Cladding – H ₂ Effects: Hydride Reorientation and Embrittlement	4	7	N/A				
Neutron Poisons – Thermal Aging	4	7	N/A				
Moderator Exclusion	5	8	N/A				
Fuel Transfer Options	6	3	No longer a pre-requisite to the HBU Confirmatory Demo or a near-term need because DOE is pursuing a dry opening of the cask.				
Welded Canister – Aqueous Corrosion	6	5	No longer a near-term need because aqueous conditions are unlikely to occur for a sufficient time to cause breach of confinement during the initial license period.				
Bolted Casks - Thermomechanical Degradation of Metallic Seals and Bolts	6	5	No longer a near-term need because of the progress being made by the international community.				
Bolted Casks - Atmospheric Corrosion	6	5	No longer a near-term need because of industry changes to weather cover designs, testing and maintenance.				

Integrated Approach to Closing Cladding Gaps

Nuclear Energy

Thermal Analysis

• What are the *realistic* temperatures that cladding experiences during drying and extended storage?

Hoop Stress

• What is the range and distribution of end of life rod internal pressures, accounting for He and pellet swelling/bonding, and clad thicknesses and diameters?

Ring Compression Tests

 Identify the ductile to brittle transition temperatures for cladding under *realistic* temperatures and hoop stress

Cyclic Integrated Reversible Bending Fatigue Test

• Identify the role of fuel/clad and pellet/pellet bonding, the number of cycles as a function of applied stress to failure

External Stresses

Identify *realistic* stresses to cladding during extended storage and normal conditions of transport

Confirm post-drying materials properties

Clad Temperatures

Nuclear Energy

Develop realistic thermal profiles

- Remove conservative assumptions in thermal models
- Use actual and realistic times for drying and transfer times
- Actual, not design basis, decay heat loadings
- Remove conservatisms in assembly decay heat calculations
- Actual, not conservative, ambient conditions (assumed 100°F average)
- Realistic temperatures expected to be <u>well</u> below the 400°C regulatory guidance
 - Used in numerous calculations for creep, He release, pressure calculations, etc.

	270	284	279	267	
267	297	312	312	295	268
275	311	300	315	312	283
283	311	307	301	313	284
271	291	312	312	296	272
	273	284	281	268	

Peak Clad Temperature (°C)

	156	156	156	156	
156	156	157	157	157	156
156	157	158	157	156	156
156	157	156	157	156	156
156	157	157	157	157	156
	158	156	155	156	

Minimum Clad Temperature (°C)

Nuclear Energy

Example of Industry-Calculated Temperatures⁽⁸⁾ For NUHOMS 32P (21.12 kW/DSC)

Table 1-2, Estimate of Peak Cladding Temperatures for Currently Loaded 32P Canisters During the Loading and Transfer Process

	32P DSC Heat Load at Loading	Blowdown Start	Completion of	Blowdown & Vacuum Drying Time	n N N N N N N N N N N N N N N N N N N N		PCT Following Helium Backfill (see Note 2)		Annulus drained	HSM insertion	Transfer Time	Transi (see N	fer PCT Note 3)
Loading	(kW)	Time (Note 5)	Dryness Test	(hours)	°F	°C	°F	°C	(Note 6)	(Note 7)	(hours)	٩F	°C
49	16.12	11/25/2005 10:00	11/27/2005 5:15	43.3	587	309	482	250	11/29/2005 6:00	11/30/2005 15:00	33	512	267
50	15.85	1/17/2006 15:15	1/18/2006 15:06	23.9	470	243	479	248	1/21/2006 4:00	1/24/2006 14:27	82	551	288
51	15.26	8/22/2006 17:30	8/24/2006 1:40	32.2	528	276	472	245	8/25/2006 5:00	8/28/2006 12:45	80	536	280
52	17.43	9/12/2006 22:35	9/14/2006 3:04	28.5	504	262	496	258	9/14/2006 18:00	9/18/2006 12:45	91	597	314
53	14.70	1/9/2007 20:20	1/10/2007 21:40	25.3	481	250	466	241	1/11/2007 21:30	1/15/2007 12:30	87	530	277
54	14.07	5/16/2007 13:47	5/17/2007 16:13	26.4	489	254	459	237	5/18/2007 21:00	5/21/2007 10:45	62	501	260
55	14.55	6/5/2007 7:15	6/6/2007 4:51	21.6	452	233	465	240	6/7/2007 9:00	6/11/2007 11:45	99	536	280
56	14.67	11/13/2007 10:30	11/14/2007 11:05	24.6	475	246	466	241	11/15/2007 9:30	11/19/2007 12:05	99	538	281
57	11.76	8/19/2008 22:25	8/21/2008 14:50	40.4	574	301	434	223	8/22/2008 22:30	8/25/2008 11:30	61	463	239
58	13.65	9/3/2008 17:00	9/4/2008 14:52	21.9	454	234	455	235	9/5/2008 15:00	9/8/2008 9:35	67	497	258
59	12.64	9/16/2008 3:00	9/17/2008 1:50	22.8	462	239	444	229	9/17/2008 22:10	9/22/2008 9:45	108	502	261
60	11.53	9/30/2008 13:55	10/1/2008 15:20	25.4	482	250	432	222	10/2/2008 12:00	10/6/2008 9:15	93	474	246
61	14.70	8/18/2009 15:12	8/19/2009 10:25	19.2	432	222	466	241	8/20/2009 12:00	8/24/2009 12:15	96	537	281
62	16.97	9/2/2009 8:10	9/3/2009 2:30	18.3	424	218	491	255	9/4/2009 11:00	9/9/2009 10:20	119	615	324
63	15.44	9/15/2009 10:50	9/16/2009 5:25	18.6	427	219	474	246	9/17/2009 3:30	9/21/2009 9:45	102	558	292
64	18.35	10/5/2010 17:00	10/6/2010 22:00	29.0	507	264	506	263	10/7/2010 20:30	10/11/2010 12:50	88	619	326
65	17.88	10/20/2010 10:15	10/21/2010 9:10	22.9	462	239	501	260	10/22/2010 16:00	10/25/2010 10:45	67	580	305
66	18.62	11/2/2010 18:00	11/3/2010 16:15	22.3	457	236	509	265	11/5/2010 0:30	11/8/2010 11:40	83	620	327

Note 1 PCT is calculated by inputting the blowdown and vacuum drying time into the fit shown in Figure 1-3 (all temperatures are based on 21.12 kW DSC heat load).

Note 2 Helium Backfill PCT is calculated by inputting the DSC heat load in kW into the fit shown in Figure 1-4.

Note 3 Transfer PCT is calculated by inputting the DSC heat load in kW into the fit shown in Figure 1-5, multiplying the resulting rate by the transfer time, and adding to the Helium backfill PCT.

Hoop Stress

Nuclear Energy

Hoop stress is a function of

- End of Life Rod Internal Pressure
 - Initial He fill pressure
 - Fission gas release
 - Temperature
 - Void volume
 - Creep down/swelling
- Clad inner diameter
- Clad thickness (minus oxide layer)

FRAPCON predictions for Watts Bar Unit 1 rods discharged during Cycles 1-12 assuming 400°C peak clad temperature⁽⁷⁾

Summary

- UFD has identified gaps associated with cladding and is pursuing closing them using an integrated approach
- Average discharge burnups are not as high as originally predicted they would be
- Further testing will focus on cladding response and performance under realistic temperatures, hoop stresses, and external stresses
 - Indications are that peak clad temperatures are significantly lower than the 400°C regulatory guidance when conservative assumptions are removed
 - Hoop stress will have a corresponding decrease
- Indications are that cladding, including for high burnup fuel, will continue to perform its safety functions during extended storage and normal conditions of transport

References

- 1. Johnson L, C Ferry, C Poinssot, and P Lovera. 2005. "Spent fuel radionuclide source-term model for assessing spent fuel performance in geological disposal. Part I: Assessment of the instant release fraction." *Journal of Nuclear Materials* 346:56-65.
- 2. Vesterlund G and LV Corsetti, in: Proceedings of the 1994 International Topical Meeting on Light Water Reactor Fuel Performance, West Palm Beach, Florida, 17-21 April, p. 62.
- *3.* Spent Fuel Transportation Applications-Assessment of Cladding Performance: A Synthesis Report. EPRI, Palo Alto, CA:2007. 1015048.
- 4. Pan G, AM Garde, and AR Atwood, in: Proceedings of LWR Fuel Performance Meeting TopFuel 2013, Charlotte, North Carolina, 15-19 September. American Nuclear Society.
- 5. Mardon JP, GL Garner, and PB Hoffmann, in: Proceedings of 2010 LWR Fuel Performance/TopFuel/WRFPM, Orlando, Florida, 26-29 September, p. 577. American Nuclear Society.
- 6. U.S. Energy Information Administration, Form GC-859, "Nuclear Fuel Data Survey" (2013). At https://www.eia.gov/nuclear/spent_fuel/ussnftab3.cfm
- 7. Bratton RN, MA Jessee, and WA Wieselquist, *Rod Internal Pressure Quantification and Distribution Analysis Using FRAPCON.* Oak Ridge National Laboratory, September 30, 2015. ORNL/TM-2015/557 and FCRD-UFD-2015-000636.
- 8. Calvert Cliffs Response For RAI#E-3, Calvert Cliffs Nuclear Power Plant, LLC, April 24, 2013 at https://adamswebsearch2.nrc.gov/webSearch2/view?AccessionNumber=ML13119A243