

Update on Testing to Evaluate Radial Hydrides

Mike Billone Argonne National Laboratory

U.S. NWTRB Meeting on High Burnup Fuel February 17, 2016

Outline of Topics

Nuclear Energy

Introduction

Previous Results for High-Exposure Cladding

- As-irradiated cladding
- Following cooling from 400°C peak drying-storage temp.

New Data for High-Exposure Cladding

- As-irradiated condition
- Following cooling from 350°C peak drying-storage temp.

FY2016 Tests in Progress

Summary and Perspectives

Nuclear Energy

Introduction

Introduction: Objectives of Argonne Program

Nuclear Energy

Argonne Experimental Program

- Generate data for ductility vs. temperature following slow cooling from T ≤400°C and decreasing hoop stress (σ_θ)
- Determine ductile-to-brittle transition temperature (DBTT) for each set of peak drying-storage T and σ_{θ} : ductility transition temperature
- Characterize extent of radial hydrides and correlate DBTT with effective length of radial hydrides (RHCF)
- From data, extract stress-strain relationships and failure stresses and strains for PWR cladding alloys (input into codes)

Argonne Collaborations

- EPRI-ESCP Fuels Subcommittee and ORNL: relevant range for σ_{θ}
- PNNL and ORNL: relevant range of cladding temperatures
- SNL, PNNL, and ORNL: relevant range of NCT loads and fueledcladding response to bending-fatigue loads (experimental)

Introduction: Loads on Fuel Rods

Nuclear Energy

Loads on Fuel-Rod Cladding during Drying & Storage

Primarily internal gas-pressure loading (hoop & axial stresses)

Loads on Fuel-Rod Cladding during Transport

- Normal conditions of transport (NCT) include vibration and shock
 - Axial bending: axial bending stresses (other stresses at pellet-pellet interfaces)
 - "Pinch" loading at grid spacers: hoop bending stresses
- Hypothetical accident conditions include severe impact loads

Introduction: Circumferential and Radial Hydrides in High-Exposure PWR Cladding

Introduction: Dissolution (Heating) and Precipitation (Cooling) Curves

Introduction: Perspective

Nuclear Energy

DBTT is NOT a Cladding Material Property

- Depends on amount and orientation of hydrides
- Depends on orientation of loads on cladding

Effects of Radial Hydrides

- Depend on extent of radial-hydride precipitation (effective length)
- May reduce HOOP failure stresses and strains
- May complicate structural analysis

Transport of Fuel Assemblies at Temperatures <DBTT</p>

- Does NOT imply failure of cladding
- At T < DBTT, cladding is still load bearing
- Need modeling/data to: determine loads on fuel rods, calculate cladding stresses and strains, and compare calculated values to stress and strain failure limits

Nuclear Energy

Summary of Previous Results: Cooling from 400°C

Response of M5[®] Cladding following Cooling from 400°C

Nuclear Energy

Test Matrix for High-Exposure M5[®] (Zr-1wt.%Nb)

- As-irradiated, 76±5 wppm hydrogen
- After cooling from 400°C/90-MPa, 58±15 wppm
- After cooling from 400°C/111-MPa, 72±10 wppm
- After cooling from 400°C/142-MPa, 94±4 wppm

Results for High-Exposure M5[®]

- As-irradiated: high ductility at T ≥20°C (no cracking up to 1.7 mm displacement)
- 90-MPa, 58±15 wppm: high ductility at T ≥20°C, 37±17% RHCF
- 111-MPa, 72±10 wppm: high ductility at T ≥90°C, 54±20% RHCF
- 142-MPa, 94±4 wppm: mod.-to-high ductility at T ≥90°C, 61±18% RHCF

Ductility vs. Test Temperature for High-Exposure M5[®]

Radial Hydrides in High-Exposure M5[®] following Cooling from 400[°]C

Nuclear Energy

90 MPa 58±15 wppm 65 MPa at 210°C 37±17% RHCF

111 MPa 72±10 wppm 82 MPa at 228°C 54±20% RHCF

142 MPa 94±4 wppm 110 MPa at 251°C 61±18% RHCF

Assessment of M5[®] Database following Cooling from 400°C

Nuclear Energy

■ Need Data for 90–110 MPa with 75–95 wppm Hydrogen

- Ductility improved with decrease in both hydrogen and hoop stress
- Need to determine DBTT vs. hoop stress at higher hydrogen levels

Need Repeat Tests to better Determine DBTT

- Only 3 data points for 400°C/111-MPa test: 1 ductile point
- Some data scatter is expected
- Recommend two more rodlets cooled from 400°C/100-MPa
 - 8 RCT data points in narrow temperature range (70–90°C)

Need Tests at <400°C</p>

- Unlikely that actual peak cladding temperatures will reach 400°C
- Less annealing would occur at lower peak temperatures
- Need to confirm previous results at T ≤350°C
- Number of tests needed will depend on results of first test

Response of Zry-4 Cladding following Cooling from 400°C

Nuclear Energy

Test Matrix for High-Exposure Zircaloy-4

- As-Irradiated, 300±15, 616±78, 640±140 wppm hydrogen
- After cooling from 400°C/113-MPa, 520±90 wppm hydrogen
- After cooling from 400°C/145-MPa, 615±82 wppm hydrogen

Results for High-Exposure Zircaloy-4

- As-irradiated, 530±70 wppm: mod.-to-high ductility at T ≥20°C
 - 300±15 wppm: high ductility at 20°C (no cracking to 1.7 mm displace.)
 - 640±140 wppm (>850 wppm local): no-to-low ductility at ≤90°C (brittle?)
 - 616 \pm 78 wppm: *refined* test method, ductility = 2.6 \pm 0.7% vs. 1% limit
- 113 MPa, 520±90 wppm: low ductility at 20°C, 9±5% RHCF
 - Recommended test at 400°C/110-MPa (4 RCT data points at 20°C)
 - Recommended test at 350°C/110-MPa (4 RCT data points at 20°C)
- 145 MPa, 615±82 wppm: low ductility at 90°C, 16±4% RHCF

Ductility vs. Test Temperature for High-Exposure Zircaloy-4

Ductility vs. Test Temperature for As-Irradiated, High-Exposure Zry-4

Crack Depth vs. Load Drop for As-Irradiated Zry-4: Load-Interrupt Tests

Nuclear Energy

44% Wall Crack 27% Load Drop 2.1% Ductility 41% Wall Crack 22% Load Drop 2.2% Ductility

39% Wall Crack 24% Load Drop 2.7% Ductility

Response of ZIRLO[™] Cladding following Cooling from 400°C

Nuclear Energy

■ Test Matrix for High-Exposure ZIRLO[™] (Zr-1wt.%Nb-1wt.%Sn)

- As-Irradiated, 530±70 wppm hydrogen
- After cooling from 400°C/80-MPa, 535±50 wppm hydrogen
- After cooling from 400°C/89-MPa, 530±115 wppm hydrogen
- After 3-cycle cooling from 400°C/88-MPa, 480±131 wppm hydrogen
- After cooling from 400°C/111-MPa, 385±80 wppm hydrogen (2 tests)
- After cooling from 400°C/141-MPa, 650±190 wppm hydrogen

■ Results for High-Exposure ZIRLO[™]

- As-irradiated, 530±70 wppm: mod.-to-high ductility at T ≥20°C
- 80 MPa, 535±50 wppm: mod-to-high ductility at T ≥20°C, 9±3% RHCF
- 89 MPa, 530±115 wppm: low ductility at 23°C, 19±9% RHCF
- 88 MPa, 480±131 wppm: low ductility at 23°C, 20±9% RHCF (3-cycle cool.)
- 111 MPa, 350±80 wppm: high ductility at 150°C, 32±13% RHCF
- 141 MPa, 650±190 wppm: brittle at 150°C, mod. ductility at 195°C

Ductility vs. Test Temperature for High-Exposure ZIRLO[™]

Nuclear Energy

Radial Hydrides in High-Exposure ZIRLO[™] following Cooling from 400°C

Response of ZIRLO[™] Cladding following Cooling from 400°C

Nuclear Energy

■ Assessment of Database for High-Exposure ZIRLO[™]

- Need data in peak stress range of 90–110 MPa prior to cooling
 - DBTT increased by 100°C within this stress range
- Need repeat tests to determine DBTT with more precision
 - Standard-fuel ZIRLO[™] rods: 60-80 MPa relevant peak stress range
 - ZIRLO[™]-clad fuel pellets with ZrB₂ (enriched in B-10) coating Integral Fuel Burnable Absorber (IFBA) rods Relevant stress ranges: 80–120 MPa and 110-150 MPa for 2 designs
- Need tests at <400°C to determine net effects on DBTT of reduction in annealing (possible DBTT increase) and reduction in dissolved hydrogen available for precipitation (possible DBTT decrease)

Nuclear Energy

New Data for 350°C Peak Drying-Storage Temperature

High-Exposure ZIRLO[™] and M5[®] following Cooling from 350[°]C

Nuclear Energy

Expectations

- ZIRLO[™]
 - Decrease (80 wppm) in dissolved hydrogen and in precipitation temperature
 - Decrease in internal pressure and hoop stress at precipitation initiation
 - Possible decrease in annealing of irradiation hardening (lower ductility matrix)
 - Anticipated net effect: decrease in DBTT
- M5[®]
 - No change in dissolved hydrogen, precipitation temperature, precipitation stress
 - Possible decrease in annealing of irradiation hardening (lower ductility matrix)
 - Anticipated net effect: no change in DBTT

■ ZIRLO[™] Tests at 350°C

- 94 MPa (84 MPa @ T_p), 644±172 wppm, 1-cycle cooling
 - Long radial hydrides (37±11%), low ductility @ ≤135°C, mod. ductility @ 150°C
- 93 MPa (83 MPa @ T_p), 564±177 wppm, 3-cycle cooling
 - Long radial hydrides (30±11%), low ductility @ ≤120°C, high ductility @ ≥135°C
- No effects of cycling, but DBTT comparable to DBTT for 400°C/111-MPa

Ductility Data for High-Exposure ZIRLO[™] following Cooling from 350°C

Radial Hydrides in ZIRLO[™] for 1- and 3-Cycle Drying Tests following cooling from 350°C

Nuclear Energy

1-Cycle-350°C Test 94 MPa → 84 MPa 37±11% RHCF ≥50% Max. RHCF 3-Cycle-350°C Test 93 MPa → 83 MPa 30±11% RHCF ≥50% Max. RHCF

FY2016 Tests in Progress

Nuclear Energy

■ ZIRLO[™] following Cooling from 350°C

- Repeat 94-MPa (1-cycle) test with lower-H (350 wppm) sample
 - High-hydrogen content (644±172 wppm) may have degraded cladding
 - 350 wppm is closer to expected hydrogen content for rods at ≤55 GWd/MTU
 - Use load-interrupt method to improve data analysis and reduce scatter
 - If ductility values are still low, investigate effects of annealing

M5[®] following Cooling from 350°C

- 92-MPa target hoop stress, 75–95 wppm target H-content
 - Metallography: oxide and metal wall thicknesses, 50±14% RHCF
 - 87-MPa actual hoop stress
 - Hydrogen content: 80±7 wppm (based on data for 3 rings)
 - Ring compression tests in progress

Radial Hydrides in High-Exposure M5[®] following Cooling from 350°C/87-MPa

Nuclear Energy

Typical – 40±10% *RHCF*

Maximum – 95% RHCF

Nuclear Energy

DBTT or Ductility Transition Temperature

- Not a material property like Young's modulus
- Depends on orientation/length of hydrides and orientation of loads
- Transport at T <DBTT does not imply failure
- ANL data may be used to determine hoop failure stresses/strains

Relevant Hoop Stresses during Drying and Storage

- Depend on end-of-life internal gas pressures
 - Standard rods have lower gas pressures (He-fill + fission gas)
 - IFBA rods have higher gas pressures (He-fill + He from B-10 + fission gas)
- Depend on average gas temperature during drying/storage
 - Horizontal/He < vertical/vacuum < vertical/He < vertical/convective-He</p>
- "Reasonable" upper-bound hoop stresses (topic for next meeting)
 - Standard PWR rods: 60-80 MPa
 - ZIRLO[™]-clad IFBA rods with annular blanket pellets: 80-120 MPa
 - ZIRLO[™]-clad IFBA rods with solid blanket pellets: 110-150 MPa

Acknowledgment

Nuclear Energy

This work is supported by the Used Fuel Disposition Research and Development, Office of Nuclear Energy (NE-53) under Contract DE-AC02-06CH11357.

> Mike Billone Manager, Irradiation Performance Nuclear Engineering Division Argonne National Laboratory 9700 S. Cass Ave., Bldg. 212 Argonne, IL 60439 630-252-7146 billone@anl.gov