

Department of Energy High-Level Waste Integration

Ken Picha Senior Advisor for Environmental Management

Nuclear Waste Technical Review Board Meeting August 24, 2016

Waste Processing: Treatment and Disposal of Radioactive Waste: Treat ~90 million gallons/500 million curies

DOE Tank Waste Management Strategy

- Safely store waste in form of liquids, sludges, saltcake and calcine
- Retrieve waste for purposes of pretreatment, treatment, and disposal
- Pretreat alkaline waste (SRS, Hanford and WVDP), typically through a separations process to separate waste into:
 - Low-activity waste stream treated and disposed as low-level waste (LLW) onsite [except offsite disposal at WVDP] (most of volume);
 - High-activity waste stream treated and disposed as high-level waste (HLW) at a geologic repository (most of activity);
- Treat high-activity alkaline waste (SRS, Hanford and WVDP) using vitrification
- Retrieve, treat and dispose remaining acidic liquid wastes at INL for disposal in a geologic repository.
- Retrieve and dispose calcine (INL) directly in its existing form or following alternative preparations for disposal.
- Stabilize tank waste residues intended for in-place closure.

OFFICE OF ENVIRONMENTAL MANAGEMENT

The Tank Waste Program Strategy

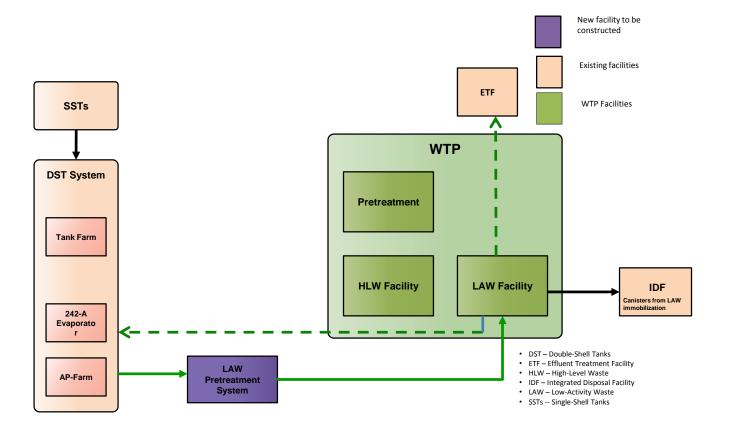
- The Tank Waste Program Strategy consists of:
- Safely storing:
 - over 90 million gallons of radioactive liquid waste at the SRS, Idaho and Hanford
 - 4,400 m3 of radioactive calcine at Idaho
 - 4,100 HLW canisters at SRS and 275 canisters at West Valley
- Constructing and operating major nuclear facilities to treat and disposition the tanks waste; and
- Emptying, cleaning and closing waste tanks.

Saltcake

Sludge

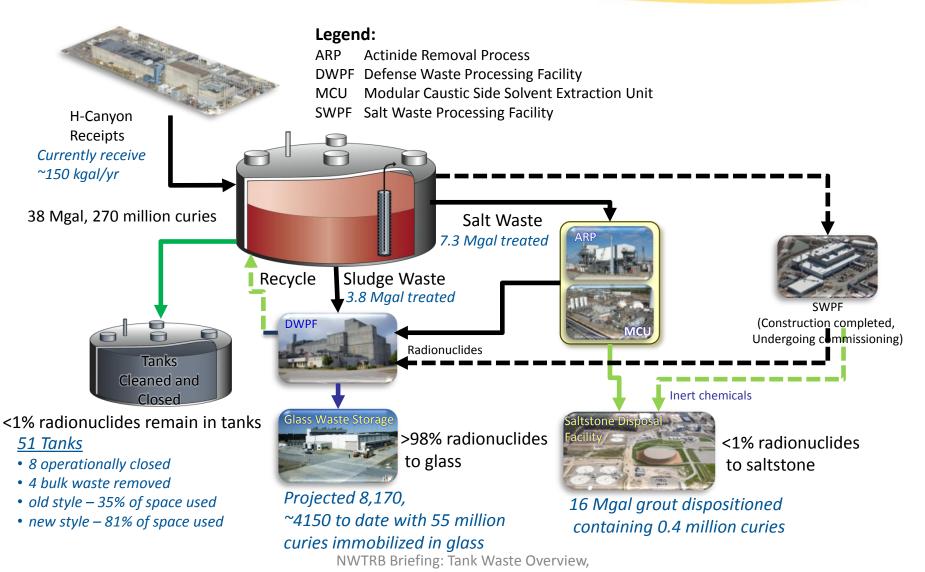
The Radioactive Liquid Waste Challenge: How EM is Making Progress Today

Converts waste to solid glass form suitable for long-term storage and disposal


Largest operating radioactive waste glassification plant in the world

Began operations in 1996

Defense Waste Processing Facility – Aiken, SC


Hanford Direct Feed Low Activity Waste Approach

OFFICE OF

ENVIRONMENTAL MANAGEMENT

SRS Liquid Waste System

OFFICE OF

ENVIRONMENTAL

NAGEMENT

Aug. 2016

OFFICE OF ENVIRONMENTAL MANAGEMENT

West Valley Demonstration Project

In September 2002 DOE completed solidification of ~600,000 gallons of HLW that had been generated by the nation's only operating commercial nuclear fuel reprocessing plant located near West Valley, New York

- The HLW sludge was vitrified and resulted in ~600 tons of glass; 24 million curies; 275 canisters
- The canisters of vitrified HLW were placed in storage in a shielded cell within the Main Plant Process Building, to await transport to a federal repository

HLW Canisters

275 stainless steel canisters of vitrified HLW

- 10' tall, 2' diameter
- 2,665 R/hr average dose rate
- 1,100 7,460 R/hr range
- 5000 lbs average weight
- 90% average fill height
- 3 canisters of decontamination wastes

NWTRB Briefing: Tank Was

West Valley Demonstration Project

Technical Approach

DEFICE OF

ENVIRONMENTAL

- Canisters decontaminated in place in the storage racks
- 5 canisters loaded into an overpack within a shielded cask
- Overpack lid remotely welded
- Cask lid secured and cask transported to the High Level Waste (HLW) Cask Storage Pad

Loaded Overpack in Cask

NWTRB Briefing: Tank Waste Overview,

Eventual transfer of overpack for shipping

OFFICE OF ENVIRONMENTAL MANAGEMENT

SRS Canisters

- Canisters:
 - 10' tall, 2' diameter (longer neck than WVDP)
 - 304L stainless steel
- HLW canisters are currently stored in Glass Storage Buildings 1 and 2 in concrete reinforced vaults
 - GSB-1 currently stores 2,254 canisters
 - GSB-2 currently has capacity for 2,340 canisters
 - To increase storage capacity, SRS will "double-stack" canisters in GSB-1 thus increasing GSB-1 storage capacity by 2,254 for a total capacity of 6,848 canisters
 - This mitigates the need for additional storage until FY 2026.

NWTRB Briefing: Tank Waste

Treated Idaho Sodium Bearing Waste

- Treated sodium bearing waste would be loaded into canisters and then the canisters stored in concrete vaults:
 - Canisters are 10' tall,26 inches in diameter
 - 304L stainless steel
- 16 canisters per vault

WTP Canister design

 High-Level Waste canisters

OFFICE OF

ENVIRONMENTAL

- 15-foot long, 2-foot diameter
- 304L stainless steel
- Low-Activity Waste canisters
 - 7-foot long, 4-foot in diameter
 - 304L stainless steel

NWTRB Briefing: Tank Waste Overview,

High Level Waste Integration

• Contractor

- Leadership transfer between Hanford and SRS tank waste contracts (same lead contractor) to promote integration
- Technology integration separations processes, tank integrity, tank retrievals
- DOE Federal
 - Temporary assignments:
 - Participation of construction project personnel from one site as reviewers on project peer reviews at other sites
 - Temporary rotations of staff from one site to another to augment startup and commissioning and share lessons learned

– Tank Waste Corporate Board:

- Managers with tank waste responsibilities at Headquarters and the field (SRS, Hanford, Idaho, West Valley Demonstration Project)
- Key issues:
 - Tank waste infrastructure commonalities
 - Tanks waste technology development
 - Commissioning of tank waste projects
 - Disposition of tank waste