Crystal Geyser, Utah

Jim Evans

Crystalline Basement & Precambrian Fault Permeability Global and New Mexico Perspectives

Mark Person, New Mexico Tech

Collaborators:

Peter Mozley New Mexico Tech Jim Evans (Utah State University)

Peter Mozley

Global Perspective: Crystalline Basement Permeability

- Permeability Mean & Variance decays with depth
- Dynamic (based on Heat Flow Geophysics & Petrology data)
- Permeability Around Well Bore Annulus 8 Times Greater than Far Field Conditions
- Estimated Permeability @ 4km ~ 10⁻¹⁶ m²

Deepest Borehole

Inferred Permeability Below

Stober & Bucher (2007) Hydrogeology Journal v 15: p. 213–224 Stober & Bucher (2015) Geofluids v. 15, p. 161–178 Ingebritsen & Gleason (2015) Geofluids Editorial on Crustal Permeability Thematic Issue

-

Estimating Crystalline Basement Permeability For Truth or Consequences Hydrothermal System Using Cross-Sectional Hydrothermal Models

Crystalline Basement Faults

Espiritu Santo Fm (Mississippian)

weathered zone

Proterozoic

Field Slide courtesy of Peter Mozley

Sangre de Cristo Mountains near Las Vegas

Granular Flow within Crystalline Basement

Fountain Formation

fluidized (?) Precambrian

Precambrian crystalline

nonconformity

nonconformity

Conclusions

- Global data sets suggests considerable variability of permeability at 4 km depth. Typical permeability @ 4 km ~ 10⁻¹⁶ m²
- Crystalline basement rocks within a mine repository @ 1 km depth will, on average, have higher permeability and higher permeability variability than wells would encounter at 4 km depth
- Crustal-scale hydrothermal models of fluid flow, heat transfer, and environmental tracers are well suited to determine in situ permeability conditions and properties at depth prior drilling
- The crystalline basement in tectonically active areas such as the Rio Grande Rift can be very permeable (10⁻¹⁰ to 10⁻¹² m²)
- Warm springs hosted in crystalline basement that have relatively young discharge water (< 10,000 years old) are good indications of relatively high permeability (10⁻¹² m²) conditions within the crystalline basement at depth of 4 km
- Precambrian faults can have distinctive properties at the sedimentary basin-crystalline basement interface. High clay content in crystalline basement weathered zone can cause ductile flow of crystalline basement rocks into basal sedimentary basin units