SAND2015-4671 PE

Understanding the Risk of Chloride Induced Stress Corrosion Cracking

D.G. Enos and C.R. Bryan Sandia National Laboratories

NWTRB Summer Board Meeting Denver, CO June 24th, 2015

Understanding and Addressing Data Gaps for Chloride Induced Stress Corrosion Cracking (CISCC)

Nuclear Energy

- What is the environment on the surface of dry storage canisters and how does it evolve with time?
- Is there sufficient stress to support through-wall stress corrosion cracks, and if so, what is the magnitude?
- Generically, what are the crack growth kinetics given the known physical and environmental conditions of dry storage casks?

Understanding the Surface Environment: Samples from Container Surfaces

Nuclear Energy

- Samples acquired from three different nuclear power stations were provided by EPRI for analysis
- Dust and salt loads were high on canister upper surfaces, but low on vertical surfaces.
- Near-marine site 1 (approximately 0.5 miles from brackish water)
 - Soluble components largely calcium and sulfate with little chloride
- Near-marine site 2 (approximately 0.25 miles from brackish water)
 - Soluble components largely calcium, sulfate, and nitrate with little chloride
- Marine site (approximately 0.35 miles from the ocean)
 - Sea-salt aerosols, occurring as aggregates of NaCl and Mg-sulfate with trace amounts of K and Ca, were a major component of the dust samples.

Understanding the Surface Environment: Salt and Brine Stability

Nuclear Energy

- Once deposited on the surface of a storage container, there are numerous processes that will affect the composition of the species that remain
 - Gas to particle conversion reactions
 - Acid degassing
 - Ammonium mineral decomposition and brine degassing
- On a hot canister, prior to deliquescence, NH₄NO₃ and NH₄Cl will not persist. If deposited, other chloride salts will accumulate, and (NH₄)₂SO₄ may accumulate.
- However, upon deliquescence, brines containing NH₄⁺ and NO₃⁻ or Cl⁻ will rapidly degas until either NH₄⁺ or (NO₃⁻ + Cl⁻) are consumed.
- Consider a deliquesced $(NH_4)_2SO_4$ brine: $(NH_4)_2SO_4 + NaCl \rightarrow \frac{1}{2}Na_2SO_4 + \frac{1}{2}(NH_4)_2SO_4 + NH_3(g) + HCl(g)$

Understanding the Residual Stress State in Fielded Dry Storage Containers

Nuclear Energy

Propagation of a stress corrosion crack requires the presence of a sufficiently large stress

- Residual stresses associated with welds
- Residual stresses associated with forming process

Stresses will vary based upon the type of weld

- Longitudinal vs. Circumferential
- Weld repairs

Mock container assembled and being evaluated

- Deep hole drilling
- Contour measurement + x-ray diffraction
- Electrochemical properties

- Wall material: 304 SS (dual certified 304/304L) welded with 308 SS
- Geometry mimics NUHOMS 24P container
- Welds are Full penetration and inspected per ASME B&PVC Section III, Division 1, Subsection NB (full radiographic inspection)

Once analyzed, container will be sectioned and used as samples for the UFD and NEUP programs

Development of a Probabilistic Stress Corrosion Cracking Model for SNF Interim Storage Canisters

Nuclear Energy

- Goal—identify most important parameters for evaluating canister SCC performance (penetration times). Used to prioritize research needs.
- Current model is simplified—not intended to accurately predict canister performance, but only to develop the functional form and data needs for the model.
- SCC model based on approach by Turnbull et al. (2006a, b)
 - Assumes SCC initiates from localized corrosion pre-cursors (corrosion pits)

Submodels

- Pitting initiation model
- Pitting growth model
- Model for pit-crack transition
- Model for crack growth

Acknowledgements

Nuclear Energy

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.